
Finite Satisfiability of Class Diagrams: Practical

Occurrence and Scalability of the FiniteSat

Algorithm

Victor Makarenkov1, Pavel Jelnov2, Azzam Maraee1 and Mira Balaban1

1 Computer Science Department
Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

makarenk@cs.bgu.ac.il, mari@cs.bgu.ac.il, mira@cs.bgu.ac.il

2 Department of Mathematics and Statistics
Bar-Ilan University, Israel
pavlikjel@gmail.com

Abstract. Models lie at the heart of the emerging Model Driven De-
velopment (MDD) approach, in which software is developed by repeated
transformations of models. Since models are intended as executable speci-
fications, there is a need to provide correctness management on the model
level. The underlying hypothesis of this research is that model level tools
should be strengthened, to support model elements in a way that would
encourage users to take advantage of their features. Furthermore, model
transformations should not neglect the translation of model features.

This paper explores the practical relevance of detecting Finite Satisfia-
bility problems on the model level. The frequency of occurrence of Finite
Satisfiability problems, and the scalability of the efficient FiniteSat al-
gorithm are studied on a set of synthetic class diagrams, created along
designed metrics. The contribution of this work is twofold, first in ad-
vancing towards creating a benchmark of class diagrams, and second, in
the empirical study of the Finite Satisfiability problem.

Keywords:
UML class diagram, finite satisfiability occurrence, detection, multiplicity con-
straints, linear programming reduction, scalability, large models, benchmarking,
statistical significance.

"Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

MoDeVVa’09, October 5, Denver, CO, United States
Copyright “A c© 2009 ACM 978-1-60558-876-6/09/10... $10.00"

1 Introduction

Models lie at the heart of the emerging Model Driven Development (MDD)
approach, in which software is developed by repeated transformations of models.
In this paradigm, models are no longer restricted design artifacts, but play a
central role in the process of software development. Therefore, it is essential to
have precise, consistent and correct models.

It seems that vendors are not aware that a large portion of designs might
have correctness problems of some kind. If models are intended as executable
specifications, there is a need to provide correctness management on the model
level.

The Unified Modeling Language (UML) is nowadays the widely accepted
standard for modeling systems. It consists of a variety of visual modeling dia-
grams, each describing a different view of object-oriented software. Class Dia-
grams are probably the most important and best understood among all UML
models. A class diagram provides a static description of system components. It
describes system structure in terms of classes, associations, and constraints.

Fig. 1. A Class Diagram with a Finite Satisfiability Problem

Figure 1 is an example of a class diagram, which partially specifies an ontology
in the biology domain. It includes association, class hierarchy and multiplicity
constraints. The constraints are inter-woven in a complex way. For example, class
Enzyme participates in class hierarchy constraints and association constraints
with non-trivial multiplicity constraints imposed on it as well.

Class diagrams might pose various correctness problems, that are caused by
the interaction of constraints. The major correctness problems are consistency
and finite satisfiability. Consistency involves the ability to instantiate the classes
in a diagram without contradicting any constraint and having non-empty classes.
Finite satisfiability requires in addition finite population for classes. Both prob-
lems are known to be EXPTIME-complete for UML class diagrams [1, 2].
Finite Satisfiability is caused by cyclic interactions involving non trivial multi-
plicity constraints(different from 0 or *). For example, the diagram in Figure 1 is
not finitely satisfiable due to interaction of multiplicity and class hierarchy con-
straints among the Chemical, Reaction, CatalyzedReaction, Enzyme and Protein

classes. The non-trivial multiplicity constraints in this cycle are 1 and 2). In gen-
eral, since class diagrams in large systems can be quite big and are written by
people, they cannot be expected to be error free.

Computer Aided Software Engineering (CASE) tools do little analysis on the
model level (compare with commercial Integrated Development Environments
(IDEs) that provide great programming aid on the code specific level). Moreover,
many model level constraints are ignored by model-to-code transformations. For
class diagrams, almost all visual constraints, including multiplicity constraints,
are ignored. Given this situation, it is not surprising that software modelers
do not frequently use non trivial multiplicity constraints. Yet, in databases, for
example, multiplicity constraints are frequently imposed on tabular relations. In
general, non trivial multiplicity constraints appear naturally in real application
requirements, such as law systems.

The underlying hypothesis of this research is that model level tools should be
strengthened, to support model elements in a way that would encourage users
to take advantage of their features. Furthermore, model transformations should
not neglect the translation of model features. In this work we concentrate on
the problem of detecting Finite Satisfiability problems on the model level. In
order to do so, we answer two questions: 1) Does the problem really appear
in class diagrams and if it does, how often 2) What is the scalability of the
FiniteSat [3] algorithm (which provides an efficient procedure for detection of
Finite Satisfiability problems in a large fragment of the UML Class Diagram
model).

In order to answer these questions, there is a need for a large set of class
diagrams, that includes non-trivial multiplicity constraints (the cause of Finite
Satisfiability problems), and that can be accepted as a representative set. Un-
fortunately, such a set does not exist, for two reasons: 1) As explained above,
users neglect specification of non-trivial multiplicity constraints; 2) There is no
accepted benchmark for class diagrams. Consequently, as part of this work, we
study and develop a set of metrics for measuring the size and complexity of
class diagrams. The frequency of Finite Satisfiability occurrence, and the scal-
ability of FiniteSat are studied on a set of synthetic class diagrams, created
along the designed metrics. The contribution of this work is twofold, first in
advancing towards creating a benchmark of class diagrams, and second, in the
study of the above two questions concerning the Finite Satisfiability problem.
These questions are also checked on several medium size class diagrams of real
applications.

Section 2 provides the relevant terminology and describes our earlier work.
Sections 3 discusses the issue of class diagram generation, and Section 4 describes
the experimental studies of the Finite Satisfiability problem. Section 5 concludes
the paper, and points to future research.

2 Background

The subset of UML class diagrams considered in this paper includes classes with
attributes, associations and five kinds of constraints:

1. Multiplicity (cardinality) constraints on binary associations.
2. Class hierarchy constraints.
3. Generalization set (GS) constraints.
4. Qualifier constraints, that strengthen multiplicity constraints.
5. Association class constraints , that reify associations.

The standard set theoretic semantics of class diagrams associates a class
diagram with instances in which class extensions are sets of objects and associ-
ation extensions are relationships among class extensions. Detailed semantics is
described in [3].

A legal instance of a class diagram is an instance that satisfies all constraints.
Correctness of a class diagram involves consistency and finite-satisfiability [4, 5,
6, 1, 7].

A class is consistent if it has a non-empty extension in some legal instance;
a class diagram is consistent if all of its classes are consistent; a class is finitely
satisfiable if it has a non-empty extension in some legal finite instance; a class
diagram is finitely satisfiable if all of its classes are finitely satisfiable1.

2.1 Finite Satisfiability of UML Class Diagrams

There are two main approaches for reasoning about finite satisfiability of class
diagrams: The linear inequalities approach and the graph based approach. The
first approach reduces the finite satisfiability problem into solvability of a lin-
ear inequality system. The second approach identifies infinity causing cycles of
multiplicity constraints in the diagram. All methods apply only to fragments of
UML class diagrams. Deciding infinity in unrestricted class diagrams is still an
open issue.

The fundamental work in the linear inequalities approach is that of [5]. It
applies to Entity-Relationship (ER) diagrams with Entity Types (Classes), Bi-
nary Relationships2 (Associations), and multiplicity Constraints. The method
transforms the multiplicity constraints into a system of linear inequalities whose
size is polynomial in the size of the diagram.

Calvanese and Lenzerini, in [4], extend the inequalities based method of [5] to
apply to diagrams with class hierarchy constraints, but the size of the resulting
system of inequalities is exponential in the size of the class diagram. Finite-

Sat [3] is a polynomial time algorithm, that extends the method of [5] for the
following constraints: multiplicity, class hierarchy, generalization set, qualifier
and association class. The scope of the algorithm is restricted by interaction of

1 Lenzerini and Nobili [5] used the notion of strong satisfiability for this term.
2 They allow also n-ary relationships, but with non-standard (membership) semantics

for cardinality constraints.

disjoint, complete Generalization Set constraints with multiple inheritance struc-
tures. Applying FiniteSat to the class diagram in Figure 1, the algorithm pro-
duces the inequality system below. The symbols c, r, cr, e, p, d, and ds stand for
the classes Chemical, Reaction, CatalyzedReaction, Enzyme, Protein, DNA

and DNASegment, respectively. The symbols s, t, and i stand for the associa-
tions substrate, catalyzed and comprise, respectively.

1. Class hierarchy and multiplicity constraints among classes Chemical, Protein,
Enzyme, Reaction and CatalyzedReaction: s = r, s ≥ c, t = 2cr, t = e, cr ≥

r, p ≥ e, c ≥ p.
2. Class hierarchy and multiplicity constraints among classes Chemical, DNA

and DNASegment:c ≥ d, i ≥ d, i = ds.
Non-emptiness of classes and associations: c > 0, r > 0, cr > 0, e > 0, p >

0, d > 0, ds > 0, s > 0, t > 0, i > 0.

The inequalities in the class cycle (1) imply c ≥ 2c, and together with the
non-emptiness inequalities, the inequality system is unsolvable. The correctness
result for the FiniteSat algorithm implies that the class diagram in Figure1 is
not finitely satisfiable.

A graph based method for identification of the cause for non finite satisfiabil-
ity was first suggested in [5]. [3] extends this method for class hierarchy, qualifier
and association class constraints.

3 Towards a Benchmark for Class Diagrams

Creating a benchmark for class diagrams requires a set of metrics for measuring
features of class diagrams. Such metrics should direct the selection or creation
of benchmark members. Conventional metrics for software include, for example,
“number of lines”, “number of fields” and “number of methods” in object-oriented
programming [8]. For UML class diagrams, [9, 10] suggest the following metrics,
for measuring the cognitive complexity of class diagrams:

1. NCM - Number of Classes in a Model
2. NASM - Number of ASsociations in a Model
3. NSUBC - Number of SUBclasses of a Class
4. NSUPC - Number of SUPerclasses of a Class
5. DIT - Depth of Inheritance Tree

We suggest a distinction between size and structure metrics. Obvious size
metrics for class diagrams are the NCM and NASM above. Structure met-
rics measure constraints in a class diagram, and their inter-relations (or ratio).
The last three metrics above can be considered as structure metrics. Additional
structure metrics might be:

1. NASM

NCM
- Ratio between number of associations and number of classes.

2. NoTM - Number of non-Trivial Multiplicity constraints.

3. NCY C - Number of cycles formed by constrained associations and classes.
4. NoTM

NCM
or NoTM

NASM
- The ratio between the number of non-trivial multiplicity

constraints and the number of classes or of associations. This metric assumes
that every association is constrained by a trivial 0..∗ multiplicity constraint.

5. NCH

NCM
- The ratio between of number of class hierarchy constraints to the

number of classes.
6. NGS

NCH
- The ratio between the number of generalization set constraints and

the number of class hierarchy constraints.
7. NMCH

NCH
- The ratio between the number of multiple inheritance constraints

to the number of class hierarchy constraints. This metric seems especially
relevant for experiments using the FiniteSat algorithm, since interaction
between such structures and certain generalization set constraints determine
the scope of this algorithm [7].

Size and structure metrics are both essential: They complement each other. The
size metrics are necessary for having large (or small) size class diagrams, while
the structure metrics are necessary for measuring the structural complexity of
diagrams.

A benchmark of class diagrams of real applications, that actually use a mean-
ingful portion of the Class Diagram model is not feasible, since modelers still
do not use many features of this model language. As noted above, this might
be a chicken-and-egg phenomenon of modelers that do not use features not sup-
ported by tools, and tools that do not support features that modelers do not
use. Therefore currently, only a synthetic benchmark is feasible.

We have implemented a platform for generation of synthetic class diagrams,
based on selection of size and structure metrics. The generation follows the
metaphore of a random graph model of Erdos and Renyi [11]. In this model,
undirected edges are placed at random between a fixed number n of vertices to
create a graph in which each of the 1

2
n(n − 1) posssible edges is independently

present with some probability p. In the class diagram paradigm, Classes play
the role of vertices, and associations and constraints play the role of edges. The
probability p is determined by the constraint metric. For example, for the metric
NoTM

NCM
that specifies the ratio between non-trivial multiplicity constraints to

number of classes, the ratio determines the probability. Note that this metaphor
allows duplicate edges.

The implemented platform uses a class diagram symbolic representation that
relies on USE [12]. The platform has a process application unit that applies an
algorithm to the symbolic representation. For the Finite Satisfiability problem
testing, it applies an implementation of the FiniteSat algorithm, that uses an
off-the-shelf linear programming component.

4 Finite Satisfiability: Problem Occurrence and

Scalability of FiniteSat

This section describes the double goal experiments for observing the frequency
of Finite Satisfiability problems in class diagrams, and checking the scalability

of the FiniteSat algorithm. The experiments described in this paper, use the
NCM and the NoTM

NCM
metrics. The reason is that Finite Satisfiability is affected

only by non-trivial multiplicity constraints (therefore, the number of associations
in general has no impact on the tested question). Note that the size metric NCM

cannot be neglected as it provides an essential measure for both, frequency and
scalability.

4.1 First Experiment: Occurrence of the Finite Satisfiability
problem, and FiniteSat scalability

In this experiment, class diagrams are repeatedly generated, and FiniteSat is
applied. Table 1 demonstrates the results of the experiment, for very large class
diagrams (100 to 500 classes). For every metrics combination, the experiment in-
cludes 100 and 1000 repetitions, in order to demonstrate high probability results.
The first two columns of the table describe the values of the metrics NCM and
NoTM

NCM
(the ratio is not explicitly stated). The third and fourth columns state

the percentage of diagrams in which a Finite Satisfiability problem was detected.
The last column describes the average running time over 100 repetitions. The re-
sults show very high performance, where class diagrams with 500 classes and 500
non-trivial multiplicity constraints, can be tested by FiniteSat in 46 seconds.
All other results demonstrate less than one minute running times.

Table 1. Existence and Scalability Experiments Results

Occurrence Experiment Scalability

NCM NoTM N=100 N=1000 Running Time in mili-seconds

50 10 8% 12.1% 7
50 25 34% 35.1% 12
50 50 91% 87.1% 37
100 50 29% 25.9% 112
100 100 96% 89.2% 376
200 100 31% 27% 899
200 200 100% 96.4% 2963
500 100 12% 6.8% 4134
500 250 24% 27.4% 13514
500 500 100% 99.5% 46229

Statistical Analysis of the Experiments Results:
The main question considering the experiment results is whether they are statis-
tically significant. For that purpose, we analyzed the experiment results using the
Z-test for proportion. The analysis denotes by p0, a slightly downward rounded
percentage of occurrence of Finite Satisfiability problems (compared with the
results obtained in the experiments).

For each metric combination, the analysis observes two hypotheses:

Table 2. P-values of one-sided Z-test

NCM NoTM p0 p-value for N=100 p-value for N=1000

50 10 5% 8.43% 0.00%
50 25 30% 19.14% 0.29%
50 50 85% 4.64% 0.00%
100 50 25% 17.78% 0.17%
100 100 90% 2.28% 0.00%
200 100 25% 8.29% 0.00%
200 200 95% 1.09% 0.00%
500 100 10% 25.25% 1.75%
500 250 20% 15.87% 0.08%
500 500 95% 1.09% 0.00%

1. H0 : p = p0: The probability of occurrence of a Finite Satisfiability problem
is equal to p0, a positive number which grows as the metrics values grow.

2. H1 : p > p0: The probability of occurrence of a Finite Satisfiability problem
is above p0.

Fig. 2. A Graph showing the appearance of Finite Satisfiability problem, by structure
of class diagram. The number of classes is 50.

Assuming that the repetitions in each experiment are independent of each other,
and the result of each repetition is 0 or 1 (whether the problem exists or not),
we have a binomial distribution for each combination of the metrics’ values.
According to the Central Limit Theorem we can use the one-sided Z-test for
proportion to test our hypotheses. The variable p-value denotes the probability
to achieve the results of the experiment, or more extreme results, under H0.
The 5% confidence level is often used by statisticians. P-values below 5% show
confidence that H0 is statistically wrong and H1 is preferable. The p-values of
the test are given in table 2.

Meaningful p-values are those below 5% (bolded in Table 2). These results
show that for 1000 repetitions, all experiment results are confidently above the
proposed p0. For example, for 50 classes and 10 non-trivial multiplicity con-
straints, the probability of occurrence of a Finite Satisfiability problem is confi-
dently above 5%; for 50 classes and 25 non-trivial multiplicity constraints, the
probability of occurrence of a Finite Satisfiability problem is confidently above
30%; for 500 classes and 100 non-trivial multiplicity constraints, the probability
of occurrence of a Finite Satisfiability problem is confidently above 10%. We see
that the occurrence of Finite Satisfiability problems is affected both by the size
and structure metrics of class diagrams.

Fig. 3. A Graph showing the appearance of Finite Satisfiability problem, by structure
of class diagram. The number of classes is 100.

4.2 Second Experiment: Finite Satisfiability Occurrence

This experiment checks the impact of the NoTM

NCM
structure metric on the problem

of Finite Satisfiability occurrence. For that purpose, we performed a series of
experiments, where the number of classes is fixed, and the number of non-trivial
multiplicity constraints grows. Figures 2 and 3 show the percentage of occurrence
of Finite Satisfiability problems, when the number of classes is fixed as 100 and
as 50, respectively. As expected, greater NoTM

NCM
values yield greater occurrence

of Finite Satisfiability problems.

5 Future Work

This paper presents an empirical study of practical issues of the Finite Sat-
isfiability problem: The frequency of its occurrence, and the scalability of the

efficient FiniteSat algorithm. The results show, with high statistical confidence,
that the Finite Satisfiability problem occurs frequently, and therefore, cannot be
neglected. Furthermore, we received very good scalability results for FiniteSat .
The empirical study also required investigation of metrics for measuring class dia-
gram size and structural complexity.Future work of this research will concentrate
on the issue of providing metrics and creating a benchmark of synthetic class
diagrams, and on developing incremental efficient methods for implementing the
FiniteSat algorithm. Such methods are, particularly relevant, for distributed
applications, where the complete large class diagram is not available.

References

[1] Berardi, D., Calvanese, D., Giacomo, D.: Reasoning on uml class diagrams.
Artificial Intelligence 168 (2005) 70–118

[2] Lutz, C., Sattler, U., Tendera, L.: The complexity of finite model reasoning
in description logics. Inf. Comput. 199 (2005) 132–171

[3] Maraee, A., Makarenkov, V., Balaban, M.: Efficient recognition and detec-
tion of finite satisfiability problems in uml class diagrams: Handling con-
strained generalization sets, qualifiers and association class constraints. In:
1st International Workshop on "Model co-evolution and consistency man-
agement" (MoDELS’08). (2008)

[4] Calvanese, D., Lenzerini, M.: On the interaction between isa and cardinality
constraints. In: The 10th IEEE Int. Conf. on Data Engineering, Washington,
DC, USA, IEEE Computer Society (1994) 204–213

[5] Lenzerini, M., Nobili, P.: On the satisfiability of dependency constraints in
entity-relationship schemata. Information Systems 15(4) (1990) 453–461

[6] Thalheim, B.: Entity Relationship Modeling, Foundation of Database Tech-
nology. Springer-Verlag (2000)

[7] Maraee, A., Balaban, M.: Efficient reasoning about finite satisfiability of uml
class diagrams with constrained generalization sets. In: The 3rd European
Conference on Model-Driven Architecture, Springer (2007) 17–31

[8] Chidamber, Kemerer: A metrics suite for object oriented design. IEEE
Transactions on Software Engineering 20 (1994) 476 – 493

[9] Kim, H., Boldyreff, C.: Developing software metrics applicable to uml mod-
els. In: 6th ECOOP Workshop on Quantitative Approaches in Object-
Oriented Software Engineering. (2002)

[10] Manso, M.E., Genero, M., Piattini, M.: No-redundant metrics for uml class
diagram structural complexity. In: Lecture Notes in Computer Science :
Advanced Information Systems Engineering. (2003)

[11] Erdos, P., Renyi, A.: On random graphs. In: Publ. Math. Debrecen. Vol-
ume 6. (1959) 290–297

[12] Gogolla, M., Buttner, F., Richters, M.: Use: A uml-based specification
environment for validating uml and ocl. Science of Computer Programming
(2007) 69:27–34

