
Softw Syst Model
DOI 10.1007/s10270-013-0390-0

REGULAR PAPER

A pattern-based approach for improving model quality

Mira Balaban · Azzam Maraee · Arnon Sturm · Pavel Jelnov

Received: 11 April 2013 / Revised: 1 September 2013 / Accepted: 1 November 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract UML class diagrams play a central role in model-
ing activities, and it is essential that class diagrams keep their
high quality all along a product life cycle. Correctness prob-
lems in class diagrams are mainly caused by complex inter-
actions among class-diagram constraints. Detection, iden-
tification, and repair of such problems require background
training. In order to improve modelers’ capabilities in these
directions, we have constructed a catalog of anti-patterns of
correctness and quality problems in class diagrams, where
an anti-pattern analyzes a typical constraint interaction that
causes a correctness or a quality problem and suggests pos-
sible repairs. This paper argues that exposure to correct-
ness anti-patterns improves modeling capabilities. The paper
introduces the catalog and its pattern language, and describes
experiments that test the impact of awareness to modeling
problems in class diagrams (via concrete examples and anti-

Communicated by Dr. Jordi Cabot.

M. Balaban · A. Maraee (B)
Computer Science Department, Ben-Gurion University
of the Negev, Beer-Sheva, Israel
e-mail: mari@cs.bgu.ac.il

M. Balaban
e-mail: mira@cs.bgu.ac.il

A. Maraee
Deutsche Telekom Laboratories, Ben-Gurion University
of the Negev, Beer-Sheva, Israel

A. Sturm
Information Systems Engineering, Ben-Gurion University
of the Negev, Beer-Sheva, Israel
e-mail: sturm@bgu.ac.il

P. Jelnov
Eitan Berglas School of Economics, Tel Aviv University,
Tel Aviv, Israel
e-mail: pavlikjel@gmail.com

patterns) on the analysis capabilities of modelers. The experi-
ments show that increased awareness implies increased iden-
tification. The improvement is remarkably noticed when the
awareness is stimulated by anti-patterns, rather than by con-
crete examples.

Keywords Anti-patterns · Pattern languages · Pattern
awareness · Experiments · Modeling problems · Analysis
capabilities · Software engineering education · Correctness ·
Quality

1 Introduction

Models are the backbone of the emerging model-driven engi-
neering (MDE) approach, whose paradigm is the develop-
ment of software via repeated model transformations. The
quality of models used in such a process affects not only
the final result, but also the development process itself. Erro-
neous or low-quality models can hide key abstractions while
highlighting false inter-relationships that can lead the project
evolution in a wrong direction.

We believe that good modeling can be achieved by model-
ing education and experience. Indeed, the quality of a model
can be improved via successive transformations (refactor-
ing), but state-of-the-art software tools do not enforce seman-
tic correctness, e.g., identifying contradictory constraints and
offering repair advices, and do not provide automatic model
refactoring. In any case, such methods cannot replace good
modeling qualities, i.e., no automation support can replace
a good modeler. Therefore, this paper deals with problems
that are highly relevant to MDE.

Modeling is a design activity that requires creativity
and adaptation to ever changing contexts and new require-
ments [1]. Good modeling cannot follow a protocol of

123

M. Balaban et al.

technical procedures. Consequently, teaching modeling (like
teaching other design activities) is hard and requires a vari-
ety of approaches and methods. One such method that seems
to meaningfully improve design capabilities involves the
study of design patterns, which are expert advices for solv-
ing typical problems that might occur in multiple contexts.
This approach assigns an educational role to design patterns:
Awareness to design patterns yields better solutions. More-
over, providing anti-patterns that improve modeling educa-
tion is essential, regardless of future automation capabilities.

The origin of the design patterns approach lies in the
field of architecture, where the architect Alexander [2] intro-
duced a new approach that involved characterization of typi-
cal problems, for which he suggested architectural solutions,
subject to context analysis. Since then, patterns have been
used in a diversity of fields, including patterns in educa-
tion [3, 4], software communication [5], human–computer
interfaces [6], and analysis patterns in business modeling [7].

The design patterns trend in software construction gained
increasing popularity since the appearance of the design pat-
terns book of the “GoF” [8], and software design patterns are
available today in almost every programming language. A
dual approach in software design involves anti-patterns [9],
which present popular bad solutions for software design
problems, followed by desirable good solutions.

This paper focuses on correctness and quality problems in
UML class diagrams, and the educational role of anti-patterns
in improving their identification. We concentrate on class-
diagram modeling, due to its widespread usage, central role in
UML modeling, and the difficulty of producing high-quality
models. Since both industry and academia usually neglect
the semantic correctness of class diagram, the problems and
corresponding patterns identified in this paper originate from
our own analysis of class-diagram semantics.

Correctness and good quality are highly significant for
models, since they serve as an abstract interface to applica-
tions, and are especially important in early stages of soft-
ware design. Problems of correctness and quality frequently
occur in large models, in particular when distributed among
several developers [10]. They are caused by complex inter-
actions among class-diagram constraints, and their identifi-
cation and repair require deep understanding of modeling
design problems.

We argue that the exposure to modeling problems and in
particular to anti-patterns that analyze such problems, pro-
vide identification means and suggest solutions, will improve
modeling skills [11]. We describe experiments that test the
impact of awareness to modeling problems, on model analy-
sis capabilities. The experiments check the model analysis
skills of modelers, before and after teaching correctness prob-
lems in class diagram, via concrete examples and via anti-
patterns. The results of the experiments assess our hypothe-
sis, and remarkably so when anti-patterns are introduced.

The rest of the paper is organized as follows. Section 2
presents a variety of causes for incorrect and low-quality
class-diagram modeling. In Sect. 3, we discuss various issues
in pattern specification and the rationale for selecting anti-
patterns for addressing correctness problems in modeling.
Sect. 4 describes the anti-pattern catalog. It informally intro-
duces the pattern class diagram (PCD) language used in
our catalog and demonstrates how concrete modeling prob-
lems are abstracted by anti-patterns. Sect. 5 describes the
experiments that evaluate the impact of awareness to correct-
ness and quality problems on class-diagram analysis skills,
Sect. 6 surveys related work, and Sect. 7 concludes the
paper.

2 Incorrectness and low quality in class-diagram
modeling

The class-diagram language is the backbone of UML [12].
It consists of classes, associations, class descriptors—
attributes, operations and constraints that are imposed on
them. Figure 1 presents a class diagram without attributes,
that demonstrates most of the constraints in the language.
In the rest of this paper, we use symbolic notations for dis-
cussing some constraints. An association with association
ends (also termed properties) a, b is denoted [a − b], and
an association r between classes A, B with properties a, b,
and multiplicity constraints [ma, na], [mb, nb], respectively,
is denoted r(a : A[ma, na], b : B[mb, nb]). Class hierarchy
between classes A, B, class A being the subclass, is denoted
A ≺ B. This notation is overloaded for property subset-
ting constraints, where p1 ≺ p2 stands for p1 subsets p2.
A generalization set (GS) constraint between a superclass
C to subclasses C1, . . . , Cn with constraint Cstr is denoted
GS(C, C1, . . . , Cn; Cstr).

The meaning of a class diagram is given by its instances. A
class-diagram instance has a domain, and a denotation map-
ping, that maps elements of the class diagram to elements
in or over the domain. Classes are mapped to sets of objects
in the domain, and associations are mapped to relationships
between these sets. The denotation of classes and associ-
ations are called extensions. Attributes are mapped to map-
pings defined on class extensions. Constraints denote restric-
tions over the extensions of the class-diagram elements. An
instance of a class diagram is legal if it satisfies all the con-
straints; it is empty if all class extensions are empty and is
infinite if some class extension is not finite. A constraint c
is entailed by a class diagram C D, denoted C D |� c if it
holds in every legal instance of C D. Formal definition of the
language, including abstract syntax and set-based semantics,
appears in [13, 14].

Figure 2 demonstrates a class diagram (a) and a non-empty
legal instance of it (b). The class diagram includes multi-

123

A pattern-based approach

Reaction

CatalyzedReaction Compound

Enzyme

1..* 1

substrate

MacromoleculeProtein

Molecule Atom

ma

atMa {subsets at}

Chemical

{disjoint}

DNA

Nucleotide

DNASegmentBasePair

1 100..*

2

0..1

chre

subsetting constraint
en

ca

catalyzed

11..*

1

1..*
1

1

bp ds

nuc1

nuc2

atco

0..1 2..*

ChromosomeGene Genom

generalization-set constraint

association
association-end (property)

class-hierarchy

composite association-end (property)

association-class

Fig. 1 A class diagram admitting correctness and quality problems

D

1..* 1..*

F

EC
0..1

1..2

p4p3

p3' {subsets p3}

p2p1

0..1

p4' {subsets p4}

{complete}

BA

2..*

(a)

f:F, C, D, B
p1

a:A
p4

e1:E, B

e2:E, Bp4
p3p3'

p4'

p2

c:C, B

p1

p2

p3

p2

p2

p1p1

(b)

Fig. 2 A class diagram and one of its legal instances

plicity constraints, class hierarchy with multiple inheritance,
a complete GS constraint, and a subsetting constraint. The
instance is legal since it satisfies model constraints:

1. Class-hierarchy constraints: All objects belong also to all
superclasses of their direct class. For example, the object
f of class F also belongs to all superclasses of F ; the
objects e1, e2 of class E also belong to all superclasses
of E .

2. Multiplicity constraints:

• Property p1: The objects c, f, e1, e2, as B objects, are
all linked to a single A object, a.

• Property p2: a, which is the only A object in the dia-
gram, is related to c, f, e1, e2.

• Property p3: e1, e2 are p3 linked, each, to exactly one
D object, f .

• Property p4: f , as a D object, is linked to two E
objects.

• Property p3′: e1, e2 are not p3′ linked to more than a
single F objects.

• Property p4′: The only F object, f , is p4′ linked to a
single E object.

3. The complete constraint: All B objects belong to sub-
classes of B, i.e., B is covered by the extensions of its
subclasses.

4. The subsetting constraints: A subsetting constraint p ≺ q
means that all p linked objects are also q linked. Indeed,
e2 is p3′ linked to f and also p3 linked to f ; f is p4′
linked to e2, and also p4 linked to it.

The two main correctness problems in UML class dia-
grams are consistency [15] and finite satisfiability [16]. Both
are demonstrated in the class diagram in Fig. 1. Consis-
tency deals with necessarily empty classes, i.e., with class
diagrams that include contradictory constraints that cannot
be satisfied by any instance. Such class diagrams are termed
inconsistent, since they have classes with empty extensions
in every legal instance. Figure 3a shows the subdiagram
of Fig. 1, that causes a consistency problem. It includes
the classes that participate in the disjoint generalization set
GS(Chemical, Molecule, Compound, Atom; Disjoint), and
the two class-hierarchy constraints MacroMolecule ≺
Molecule and MacroMolecule ≺ Compound. The disjoint
semantics enforces the extensions of Molecule and Com-
pound to be disjoint sets in every legal instance. Therefore,

123

M. Balaban et al.

Fig. 3 Two class diagrams with
consistency and finite
satisfiability problems

Compound

Macromolecule

Chemical

Molecule

{disjoint}

Atom

(a)

Reaction

CatalyzedReaction

1..* 1

substrate

1

Chemical

Molecule

re

2

ca

en Enzyme

Protein

ch

(b)

the extension of MacroMolecule, which is a subset of both
Molecule and Compound extensions, must be an empty set
in every legal instance. Consequently, the class diagram is
inconsistent.

Finite satisfiability deals with necessarily empty or infi-
nite classes, i.e., with class diagrams involving multiplic-
ity constraints that cannot be satisfied if the associated
classes have finite extensions. That is, if the associated
classes have non-empty extensions, then they must be infi-
nite. Such class diagrams are termed not finitely satisfiable
since they have classes with either empty or infinite exten-
sions in every legal instance. Figure 3b shows the subdia-
gram of Fig. 1, that causes a finite satisfiability problem.
It involves classes Chemical, Reaction, CatalyzedReaction,
Enzyme, Protein, and Molecule, and the associations and
class hierarchies among them. The multiplicity and class-
hierarchy constraints imply that in every legal instance of this
subdiagram, the numbers Ch, R, Cr, E, P, M of instances
of classes Chemical, Reaction, CatalyzedReaction, Enzyme,
Protein, Molecule, respectively, must satisfy the relation-
ships 2R ≤ 2Cr = E ≤ P ≤ M ≤ Ch ≤ R, which
can be satisfied only by empty or infinite extensions of
these classes. Consequently, the class diagram is not finitely
satisfiable.

Quality of class diagrams is a less quantitative criterion.
Low quality can be caused by a variety of reasons, such
as redundancy of information, incomplete information, too
low or too high coupling of classes, in-cohesive classes, and
excessive usage of static or key attributes. In this paper, we
refer only to the first two reasons: redundant and incomplete
specification. Redundancy refers to over or imprecise speci-
fication, where the redundant or missing information can be
syntactic1 or semantic. Incompleteness refers to essentially
missing information. A deep semantic meaning of incom-
pleteness involves model validation (e.g., as performed by
the USE system [17]), which aims at finding unwanted model
instances. Here, we refer to a more shallow meaning of

1 Some missing syntactic information is detected by tools.

incompleteness, i.e., models that do not display existing con-
straints.

There is a delicate dialectical relationship between the
two quality problems, as providing too much information
can yield redundancy, while omitting information might
result in incompleteness. In Fig. 1, in addition to the cor-
rectness problems, there are also problems of incomplete
information: The subsetting constraint atMA ≺ at on
the atMa property entails an unmarked subsetting con-
straint ma ≺ co on the ma property; the GS con-
straint GS(Chemical, Molecule, Compound, Atom; disjoint)
implies many unmarked GS constraints, such as GS(Chemical,
Gene, Atom; disjoint).

Correctness and quality problems in class diagrams are
caused by undesirable interactions of constraints. Due to
the diversity of constraints in class diagrams, analysis of
problematic constraint interaction is complex and requires
study of typical interactions. In the following, we present
several cases of constraint interactions that cause correct-
ness or quality problems. In the following sections, we show
that such cases can be abstracted by anti-patterns, that group
together problematic interactions admitting a similar struc-
ture, while separating interactions that have diverging causes.
This analysis forms the basis for the study of class-diagram
anti-patterns.

Inconsistency problems: Figure 4 presents three cases of
inconsistency in class diagrams, that are caused by differ-
ent kinds of constraint interactions:

1. Figure 4a presents an inconsistency problem caused by
the interaction of the disjoint GS constraint and the multi-
ple inheritance of class C3: The disjoint constraint forces
class C3 to be empty in every legal instance.

2. Figure 4b is inconsistent due to the interaction of the dis-
joint and the complete constraints: It forces the extension
of class C3 to be empty, since an instance of C4 must be
an instance of C1 or C2, which are disjoint from C3.

3. Figure 4c presents an inconsistency problem that is
caused by the interaction of the composition and the sub-
setting constraints. An instance c3 of C3 must be related

123

A pattern-based approach

Fig. 4 Consistency problems
that are caused by different
kinds of constraint interactions.
a Interaction of disjoint and
multiple inheritance. b
Interaction of disjoint and
complete. c Interaction of
composition and subsetting (a) (b) (c)

to an instance c2 of C2 via the composition association-
end q1. Due to the subsetting constraint q1 ≺ p1, c2 must
be related to c3 via the composition property p2, causing
a composition cycle.

Finite satisfiability problems: Figure 5 presents six class dia-
grams that are not finitely satisfiable due to five kinds of
problematic constraint interactions:

1. In Fig. 5a, each instance of C has a single successor and
at least two predecessors. Therefore, if the number of C-s
in a legal instance is c, and the number of predecessor–
successor links is d, then d must satisfy d = c · 1 and
also d ≥ c · 2, implying the inequality c ≥ c · 2, that
can be satisfied only by an empty or infinite extension of
class C . The problematic constraint interaction in this case
involves the multiplicity constraints on the predecessor–
successor association.

C
pred

succ

2
1

(a)

C1 C2 C3
11 11

12
r q

w

(b)

C

C1
2

parent
1

child

(c) (d)

C
1p1

p2 1

(e)

C1 C2

C

1 2
q

4

3
C3

r

(f)

Fig. 5 Finite satisfiability problems that are caused by different kinds
of constraint interactions: (a, b) Interaction of multiplicity constraints in
an association cycle. (c) Interaction of multiplicity constraints in a cycle
of associations and class-hierarchy constraints. (d) Interaction of multi-
plicity and GS constraints in a cycle of associations and class-hierarchy
constraints. (e) Interaction of multiplicity and composition constraints
in an association cycle. (f) Interaction of multiplicity constraints on an
association cycle via an association-class

2. In Fig. 5b, the problematic constraint interaction involves
the multiplicity constraints in the cycle of associations
w, q, r , similarly to the first case.

3. In Fig. 5c, the interaction between the class hierar-
chy C1 ≺ C and the multiplicity constraints on the
[parent−child] association causes a finite satisfiability
problem.

4. In Fig. 5d, the problematic interaction involves the disjoint
constraint and the multiplicity constraints on the [p1− p2]
association.

5. In Fig. 5e, the problematic interaction involves the mul-
tiplicity constraints on [p1 − p2] and the composition
constraint on the p1 property. In this class diagram, if the
extension of C is finite and non-empty, the extension of
the [p1 − p2] association must be cyclic (i.e., includes
a cycle of composition linked objects, which contradicts
the semantic constraints of composition). Therefore, C
cannot be finite, i.e., it can have only empty or infinite
extensions.

6. Finally, in Fig. 5f, the interaction between the multiplic-
ity constraints on the associations q, the class hierarchy
C ≺ C3 and multiplicity constraints on the associations
r causes a finite satisfiability problem.

Redundancy and incompleteness problems: Figure 6 presents
redundant and incomplete class diagrams due to different
kinds of constraint interactions:

1. In Fig. 6a redundancy is caused by the multiplicity con-
straints on properties p1, p2, p3, p4. For a legal finite and
non-empty instance, if the number of C1-s is c1 and the
number of C2-s is c2, then the multiplicity constraints
on properties p2, p3 imply c1 = c2. But the multiplicity
constraint 1..* on property p1 enables c1 ≥ c2. Therefore,
the ∗ maximum multiplicity constraint is not sufficiently
tight, i.e., redundant.

2. In Fig. 6b, the association–class hierarchy (AHC) C1 ≺ C
entails the visualized association specialization c1 ≺ c
and the subsetting constraints b1 ≺ b, a1 ≺ a [14]. We
think that in this case, all entailed constraints should not
be visualized since they involve the elements that directly
participate in the AHC, and are usually naturally under-
stood by modelers. Therefore, the explicit visualization
of the association-hierarchy constraint is redundant.

123

M. Balaban et al.

Fig. 6 Class diagrams
admitting redundancy and
incomplete information
problems

(a) (b)

(c) (d)

3. In Fig. 6c, the subsetting constraint b1 ≺ b entails the sub-
setting constraint c1 ≺ c on the c1 property. We think that
this is a case of incomplete information since the missing
symmetric constraint is not easily inferred by modelers.

4. In Fig. 6d, the GS constraint GS(C, C1, C2; dis joint)
entails a non visualized GS constraint GS(B, C1, C2;
dis joint). The missing information is meaningful as it
involves different constructs of the class diagram and can-
not be easily inferred by modelers (think of large class
diagrams), and it affects automatic verification tools2.

Having demonstrated the diversity of causes for incorrect-
ness and low-quality problems (by concrete examples), we
argue that in real class diagrams, understanding the various
interactions among constraints, and their impact on correct-
ness or quality, is not straightforward and requires training.
In order to support awareness for modeling problems, we
have developed a catalog [20] of anti-patterns for correctness
and quality problems. The patterns in the catalog are sorted
by kinds of modeling problems. Each anti-pattern character-
izes a design problem that can be realized in multiple (usu-
ally infinity of) cases, suggests an identification structure and
solutions.

3 Anti-patterns for correctness and quality problems

Patterns provide solutions to characteristic problems that
occur in multiple concrete cases, within various contexts.
The formulation of patterns requires abstraction over multi-

2 The missing information causes failure of the FiniteSat algorithm
[13, 18]. Indeed, this algorithm can be strengthened by pre-processing
of propagation of disjoint, incomplete constraints [13, 19].

ple concrete cases. For patterns whose aim is principally edu-
cational, their formulation raises several controversial issues
concerning the nature of patterns and their specification. In
this section, we shortly discuss the issues that we have dealt
with, while developing the anti-pattern catalog.

Anti-patterns as an educational instrument: Anti-patterns
present corrections to wrongly solved problems. They are
based on the assumption that learning from commonly occur-
ring mistakes has an educational value. The issue of using
positive or negative examples in software and modeling edu-
cation is controversial (see Sect. 6). Since our catalog deals
with correctness and quality problems, its patterns present
(negative) examples of bad interactions of constraints.

Using concrete examples or abstractions: Concrete exam-
ples are certainly needed for demonstrating multiple occur-
rences of a pattern problem. Sometimes patterns are specified
simply by presenting multiple concrete examples [8, 21, 22]
that explain more general verbal specifications. Yet, since a
pattern handles a typical case that occurs in multiple situa-
tions, concrete examples might fall short for characterizing
the common problem that is realized in these examples. There
might be essential conceptual structures hidden within the
concrete examples, which can be highlighted only by their
abstraction. Indeed, the examples in Sect. 2 show that a single
correctness problem can be caused by different kinds of con-
straint interactions, that might be hard to detect in concrete
examples.

Using abstract structures instead of concrete examples
enables accurate specification of problems and solutions,
since multiple concrete examples can be replaced by a sin-
gle abstraction. The benefit of abstract structures is twofold:
They can identify similar instances by ignoring marginal dif-
ferences and single out different instances by emphasizing

123

A pattern-based approach

different relevant abstractions. The anti-patterns in our cata-
log [20] use abstract structures for describing class diagrams
(as suggested in [23]). The abstract structures are defined as
PCDs. Every anti-pattern in our catalog provides a thorough
analysis of the relevant constraint interaction problem.

Modeling level of pattern specification: A class-diagram pat-
tern describes multiple class diagrams. Therefore, its speci-
fication must involve meta-model constructs. One approach,
taken by [24], and described in some detail in Sect. 6, defines
modeling patterns as a domain-specific modeling language
(DSML), that resides on the meta-model level. We adopt a
different approach, that extends the class-diagram language
with abstraction constructs like variable and collection (e.g.,
an association sequence, which is an ordered collection of
associations)3. These extensions are captured in the PCD lan-
guage, which is formally defined in [25] (called non-ground
class diagram). A pattern class diagram that includes abstract
elements can be instantiated by multiple (concrete) class
diagrams.

Cognitive effectiveness of modeling patterns: Modeling pat-
terns have an educational value. Therefore, patterns should
be described in an intuitively appealing manner. We use the
criterion of cognitive effectiveness of [26], which refers to
the clarity of translations between cognitive and visual con-
cepts. Moody [27] suggests some principles for achieving
cognitive effectiveness:

1. Semiotic Clarity—a one-to-one correspondence between
semantic constructs and representation symbols.

2. Semantic Transparency—easy association between sym-
bols and their corresponding concepts.

3. Perceptual discriminability—clear distinction between
symbols that represent different constructs.

For modeling patterns, it means that pattern structures should
have visualization (concrete syntax) that directly reflects the
intended model. This criterion dictates our decision to define
the PCD language as an extension of the class-diagram lan-
guage, rather than as another modeling layer. The implica-
tions are as follows:

1. The visualization of a pattern class diagram naturally
extends the visualization of a class diagram.

2. It is easy to distinguish the abstract constructs from the
concrete in a pattern class diagram.

3. The instantiation of a pattern class diagram into (concrete)
class diagrams is an intuitive relation that directly reflects
its meaning.

3 Our approach is inspired from logic in the sense of having both con-
stant and variable symbols that can be quantified.

4 The anti-pattern catalog and its usage

The catalog [20] includes patterns for solving problems of
correctness or of quality of class diagrams. The correctness
problems refer to the two formal correctness problems of
consistency and finite satisfiability. Quality problems refer to
formally correct design problems that do not meet criteria of
desirable design. The quality problems are further classified
into incomplete design, redundancy problems, and compre-
hension problems. Within categories, patterns are classified
by kinds of constraint interactions that cause different prob-
lems. This problem-based classification is contrasted with
the approach of [28], which is syntax-semantics-pragmatics
based.

Based on the above classification, the catalog currently
includes a total of 43 patterns: 15 patterns for finite satisfia-
bility problems, 11 patterns for consistency problems and 17
patterns for quality problems. Each anti-pattern provides an
identification structure for its problem, associated with con-
crete examples, proof of the problem, and suggested repair
options. Note that the catalog is continuously under devel-
opment, and new patterns are being added.

In order to describe patterns, we need a means to spec-
ify their components. For class-diagram modeling, the need
is for a language for describing multiple class diagrams that
realize the pattern’s problem. Section 4.1 below shortly intro-
duces the PCD language, and Sect. 4.2 presents the main parts
of the patterns that were used in the identification experi-
ments described in Sect. 5.

4.1 The pattern class diagram (PCD) language

The abstractions needed for pattern specification include
variables ranging over class-diagram elements and com-
pound structures of class-diagram elements. Variables are
needed in order to enable instantiation by concrete elements.
Compound structures are needed for capturing structures
like association sequences, hierarchy sequences, interleaved
association-hierarchy sequences, and class collections.

We extend the UML class-diagram meta-model with new
classes that capture the new abstractions and provide their
concrete syntax as new visual notations in class diagrams.
Figure 7 presents the main part of the meta-model extension
for the PCD specification. Elements that belong to the UML
class-diagram meta-model appear as highlighted rectangles.

The enhancement covers insertion of variables and inser-
tion of compound structures. In order to account for vari-
ables, the relevant classes are duplicated. For example,
the Class meta-class turns into an abstract class with
three subclasses VariableClass, ConcreteClass
andNonOrderedClassCollection. Compound struc-
tures are specified via the Collection meta-class and its
subclasses. Figure 8 presents the solution suggested in the

123

M. Balaban et al.

Variable
Association

Association
Sequence

NonOrderedCollection OrderedCollection

Concrete
Class

Variable
Class

Concrete
Association

Association

Property

kind:AggregateKind
Variable
Property

Concrete
Property

1

Variable
Multiplicity

Concrete
Multiplicity

NonOrdered
ClassCollection

1

sub

*

gen

mul

InterleavedAssociation
GeneralizationSequence

Generalization
Sequence

Class

Multiplicity

Concrete
Value

*

1

*

gen

*

super1

2 assocend

type1

Collection

1 assoc

prop

Generalization

Variable
Value

Value

* min1

*

*

Variable

From VariableMultiplicityFrom VariablePropertyFrom VariableClassFrom VariableAssociation

max1

1

1

max

min

From VariableValue

Fig. 7 The Meta-model of the PCD language

val=0

Component: VariableClass

:VariableMultiplicity

Composite:VariableClass

:ConcreteMultiplicity

val=1

:Generalization
Sequence

:Generalization
Sequence

:Association
Sequence

child: VariableProperty

parent: VariableProperty

Leaf

Fig. 8 The identifying structure of Composite pattern, as an explicit
instance of the PCD meta-model

GoF Composite design pattern [8], as an explicit instance of
this meta-model.

Specification of patterns as explicit instances of the meta-
model of the language is precise, and essential for automa-
tion. Yet, it is useless for education, since the explicit instance
representation is cognitively ineffective. It is hard telling the
correspondence between the explicit instance in Fig. 8 and
the intended structure in Fig. 9a. The conventional approach
in the modeling community is to adopt a visual concrete

syntax that represents meta-model instances in a cognitively
effective way.

The concrete syntax for pattern class diagrams extends the
standard visualization of class diagrams, with visualization
for variables and for collections.

1. Variable visualization: Variable elements are visualized
in the same way as their non-variable counterparts, but
their label is prefixed by the “?” symbol. For example,
variable classes are visualized as classes in a class dia-
gram, but have a “?” prefix in their names; variable mul-
tiplicities are visualized as regular multiplicities but with
a “?” prefix label.

2. Compound element visualization: Compound elements
have distinct visualizations that remind their origins.
Sequences of class-diagram relation elements (associa-
tions, hierarchy, aggregation, composition) are visualized
by lines or arrows that remind their non-sequence counter-
parts, with distinct labels that specify the sequence kind.
The label “*” is used for denoting sequences of any length
(including the empty sequence), and the label “+” is used
for non-empty sequences. For example, a class hierarchy
(generalization) possibly empty sequence is represented
by a generalization line, labeled by “*”. The use of *,+
labeled lines and arrows is motivated by the traditional
meaning of these operators as denoting ≥0 and >0 repe-

123

A pattern-based approach

Fig. 9 The composite design
pattern. a The solution to the
Composite design pattern of the
GoF (without specification of
operations). b An instance of the
solution of the Composite
design pattern in the graphics
domain (following the GoF)

Compnent

CompositeLeaf 1

parent

0..1

child

(a) (b)

Table 1 Visualization of compound elements in PCD

titions, respectively. Table 1 shows the concrete syntax of
some compound elements, and Table 2 presents examples
of compound elements of PCD, and possible class dia-
grams that are denoted. Figure 10 describes the concrete
syntax for the solution of the Composite design pattern
(the precise meta-model instance appears in Fig. 8).

The visualization of pattern class diagrams is cognitively
effective due to the following features:

1. The concrete syntax follows the conventional rules of
class-diagram visualization. That is, the rules for visu-
alization of the new elements of PCD are either identical
or very similar to their class-diagram counterparts.

2. The new PCD elements are clearly singled out from their
class-diagram counterparts.

3. Instantiation (replacement) of compound elements in a
pattern class diagram follows intuitive rules of zooming
into an abstraction.

Table 2 Examples of PCD compound elements and their possible
class-diagram denotations

C1 C C2
* * * *

p3p1 p2 p4

C1

C

C2

0..1
*

p1
p2

Compnent

Composite 1

parent

?m..?n
child

Leaf
Children

Fig. 10 Visualization in PCD of the solution of the Composite design
pattern

A pattern class diagram denotes a set of class diagrams,
termed its instances. This semantics is given by a mapping
pcd→cd, that substitutes concrete elements for variable ele-
ments of the same type, and elaborates compound abstrac-
tions. For example, a variable class is substituted by a class,
an association sequence is replaced by a sequence of associ-
ations, and a class collection is replaced by a non-empty set
of classes. The precise definition is given in [25]. For exam-
ple, the class diagram in Fig. 9b is an instance of the pattern
class diagram in Fig. 10. Figure 11 details a possible step-
wise replacement procedure that computes a pcd→cd map-
ping. Figure 11b shows the result after replacing a variable

123

M. Balaban et al.

Children
?Vr1 r2r +

**

A

B

Children
Dr1 r2r +

**

A

B

Children
Cs1 s2

*
Dq1 q2q

**

B

A

*
s

C
D

*
A1 A2

A

B

*

w

w1

t2t1 q2

*

*

t

*

w2

q1

*

q

(a) (b)

(c) (d)

Fig. 11 Instantiation of a pattern class diagram into a class diagram. a A pattern class diagram. b After variable replacement. c After
associationsequence replacement. d After class collection replacement

class; Fig. 11c shows the result after replacing an association
sequence; Fig. 11d shows the result following the replace-
ment of a class collection.

Evaluation of the PCD language: The PCD language enabl-
es abstraction over class diagrams. Its main characteristic
is the built-in support for the variable and the compound
concepts, which are smoothly added to the Class-diagram
language. This characterization provides for the main advan-
tages of the language:

Abstraction-based: The language accounts for all patterns
that require the notions of Variable or of Aggregation. We
say that it is abstraction-concept-based rather than pattern-
based, since it is not affected by the introduction of new
patterns.
Formal definition: Patterns are plain instances of the lan-
guage meta-model, using the regular class-diagram instanti-
ation mapping.
Cognitively effective concrete syntax: The visualization
is an intuitive extension of the class-diagram visualization
since it uses standard class-diagram visualizations, and added
annotations like ∗,+ have their common meaning. There are
no pattern-specific rules for visualization.
Class-Diagram intuitive semantics: The pcd→cd mapping
uses the intuitive meaning of the abstraction elements. The
mapping accounts for instantiation of all patterns.

4.2 Pattern examples

A pattern specification consists of nine entries: (1) Name;
(2) Pattern problem (a textual description of the problem

handled by the pattern); (3) Concrete examples; (4) Pattern
identification structure in the form of a pattern class diagram;
(5) Listing of the involved meta-model elements; (6) Pattern
verification constraint; (7) Repair advice (refactoring); (8)
Listing of related patterns; (9) Pattern justification—a cor-
rectness proof for the claims of the pattern identification,
verification, and advice.

Example 1 [Pure Multiplicity Cycle (PMC) Pattern]

1. Pattern name: Pure Multiplicity Cycle (PMC).
2. Problem: A cycle of associations with multiplicity con-

straints might introduce a finite satisfiability problem.
3. Concrete example: See Fig. 12a.
4. Pattern identification structure: See Fig. 12b.
5. Involved meta-model elements: The meta-classes Asso-

ciation and Class.
6. Pattern verification: The pattern identification structure

characterizes a necessary but not sufficient condition for
existence of a finite satisfiability problem caused by the
multiplicity constraints in an association cycle. The verifi-
cation condition below provides the sufficient condition.
Its specification refers to a schematic description of an
instance class diagram of the pattern identification struc-
ture, as in Fig. 13.
The cycle of associations causes a finite satisfiability
problem if and only if one of the following conditions
holds:

• If for all 1 ≤ i ≤ k, ni 	= ∗:
k∏

i=1
m′

i <
k∏

i=1
ni .

• If for all 1 ≤ i ≤ k, n′
i 	= ∗:

k∏

i=1
mi <

k∏

i=1
n′

i .

123

A pattern-based approach

(a)

C

(b)

Fig. 12 Concrete example and identification structure of the PMC
pattern

C1 C2
m1..m1

Ck
m'1..n'1 m2..n2 m'k-1..n'k-1

m'k..n'k mk..nk

Fig. 13 An instance of the pattern identification structure

7. Repair advice: Consider relaxation of the multiplicity
constraints: Decrease a minimal multiplicity value or
increase a maximal multiplicity value.

8. Related patterns: The Multiplicity-Hierarchy-Cycle
(HMC) pattern.

9. Pattern justification: A proof that an occurrence of the
pattern identification structure causes a finite satisfiability
problem if and only if it satisfies the pattern verification
condition.

Below, we shortly describe the problems, identification
structures, and some repair advices of several anti-patterns
that were used in the experiments described in Sect. 5.

1. The Multiplicity-Hierarchy-Cycle (HMC) pattern: This
anti-pattern characterizes finite satisfiability problems
due to interaction of multiplicity constraints on a cycle
of associations and class-hierarchy constraints. Figure 14
presents its identification structure.

2. The Diamond pattern: This anti-pattern characterizes
consistency problems due to interaction between mul-

Fig. 14 The identification structure of the HMC anti-pattern

Children2

?C

{disjoint}

Children1

+

?m1..?n1

?mn..?nn

Subscription

Direct Subscription ThirdParty
 Subscription

Journal

{disjoint}

1
1

1

1

«replaced by»
«replaced by»

(a) (b)

«replaced by»

«replaced by»

Fig. 16 The DisPath pattern: The identification structure (a) and an
instance class diagram (b)

tiple class-hierarchy and disjoint constraints. Concrete
examples appear in Figs. 4a and 15b. The identifica-
tion structure specification is presented in Figs. 15a, b
presents an instance class diagram. Classes Academic,
GraduateStudent and FacultyMember instantiate vari-
able classes ?C, ?C1, ?C2 receptively, class VistorLec-
turer instantiates the Children Collection-class, and the
class hierarchies ExternalPhDLecturer ≺ PhDStudent ≺
GraduateStudent and ExternalPhDLecturer ≺ Faculty
Member instantiate the generalization sequences from ?D
to ?C1 and to ?C2, respectively. A possible repair advice
in this pattern is to remove the disjoint constraint.

3. The Disjoint Paths (DisPaths) pattern: This anti-pattern
characterizes finite satisfiability problems due to inter-
action of a disjoint GS constraint with multiplicity
constraints on the association sequences from the GS-
subclasses to the GS-superclass. Concrete examples
appear in Figs. 5d and 16b. The pattern identification
structure appears in Fig. 16a.

4. The Disjoint Complete (DisCom) pattern: This anti-
pattern characterizes inconsistency problems caused by
the interaction of intersecting disjoint and complete GSs,
with class-hierarchy sequences from a subclass of the dis-
joint GS to the superclass of the complete GS. Figure 17a
presents the identification structure and Fig. 17b presents
an instance.

Fig. 15 The Diamond pattern:
The identification structure and
an instance class diagram. a The
diamond identification structure.
b An instance of the diamond
pattern

C1 C2

C
{disjoint} or
{disjoint, complete} or
{disjoint, incimplete} GraduateStudent FacultyMenber

PhDStudent

ExternalPhDLecturer

VistorLecturer

Academic

{disjoint}

(a) (b)

123

M. Balaban et al.

Fig. 17 The DisCom pattern
identification structure.
a Identification structure. b An
instance class diagram

C1

Children2

C

D

{disjoint}

{complete}

Children1

Subject

Statistics Biology Computer
Science

Bioinformatics

Natural
Science

Metabolic
Computing

{complete}

(a) (b)

?C1 ?Cn

(a)

C
1p1

p2 1

(b)

Fig. 18 The identification structure and an instance of the PCC pattern

5. Pure Composition Cycle (PCC) pattern: This anti-pattern
characterizes finite satisfiability problems due to interac-
tion of composition constraints, multiplicity constraints,
and a cycle of associations. Figure 18a presents the iden-
tification structure and Fig. 18b presents an instance.

6. Association–Class-Hierarchy (AHC) Pattern: This anti-
pattern characterizes finite satisfiability problems due to
interaction between an association-class, the multiplicity
constraints on the associated association, and multiplicity
constraints on a cycle of associations and class-hierarchy
constraints between the association-class and one of the
classes of the associated association. Figure 19b presents
an example, and Fig. 19a presents the identification struc-
ture.

7. XOR Subsetting (XORSub) pattern: This anti-pattern
characterizes consistency problems due to interaction of
a XOR and a subsetting constraints. Figure 20a presents
the identification structure and Fig. 20b presents an
instance.

5 Evaluating the impact of anti-pattern awareness
on class-diagram analysis skills

In order to examine the extent to which awareness to model-
ing problems helps in identifying erroneous models, we con-
ducted three independent experiments that check the effec-
tiveness of introducing modeling problems on their identifi-
cation. The first experiment examines the effect of introduc-
ing modeling problems via examples, the second experiment
tests the effect of introducing such problems via anti-patterns,
and the third one verifies that using a catalog of anti-patterns
leads to accurate identification of modeling problems. In the
following, we elaborate on the goals and hypotheses, the

participants, the procedure, and the results. Then, we dis-
cuss the results of the experiments, followed by the threats to
validity.

5.1 Goals, hypotheses, and variables

In order to examine the questions aforementioned, we set
the goals and hypotheses for three experiments as shown in
Table 3.

For the first and the second experiments, the independent
variables are the level of awareness of modeling problems,
i.e., general comments (for the control groups) and concrete
examples and anti-patterns (for the other group). The depen-
dent variable is the number of identified modeling problems.

5.2 Participants

The participants were third-year software engineering stu-
dents with background in computer science and background
in information systems engineering. The first and the sec-
ond experiments were conducted in class as part of a course
on Object-Oriented Analysis and Design. Student participa-
tion was voluntary. Nevertheless, as an incentive to actively
and properly participate in the experiments, the students
were told that their participation would add bonus points
to the final grades, in proportion to their achievement. The
third experiment was part of an exam at the end of the
course.

In the first experiment, the students were divided ran-
domly into groups of 27 (general introduction) and 18 (exam-
ples). To verify that the division was not a factor in the
experiment success, we tested the similarity of the groups
based on their mean grade point average (GPA) using the
t test statistical analysis and found no statistical differences
(t = −0.747, p = 0.459). In the second experiment, we had
43 students who did both parts before introducing the anti-
patterns and after that introduction. In the third experiment,
we had 61 students identifying modeling problems after they
were familiar with the anti-patterns and the catalog. The first

123

A pattern-based approach

Fig. 19 The identification
structure and an instance of the
AHC pattern

?A

?C1

?Ci

?Cj

?Cm

?Cn

?B

(a)

C1 C2

C

2 1
q

C3

4

3
r

(b)

Fig. 20 The identification
structure and an instance of the
XORSub pattern

?Cn

?C1

?q2 {subsets ?q1}

?q1
?C XOR

?p2 {subsets ?p1}

?p1

*

(a)

C2

C1

q2 {subsets q1}

q1 p1
C

XOR
0..10..1

*

1
p2 {subsets p1}

(b)

Table 3 Experiment goals and
hypotheses Exp. number Goal Null hypothesis

1 Test whether the ability of non-experts to
identify problems in a given model
improves after being exposed to concrete
examples of modeling problems

H1
0 : no significant difference exists between
the number of problems identified by
non-experts when modeling problems are
(1) generally explained; (2) introduced by
examples

2 Test whether the ability of non-experts to
identify problems in a given model
improves after being exposed to
anti-patterns for identifying modeling
problems

H2
0 : no significant difference exists between
the number of problems identified by
non-experts when modeling problems are
(1) generally explained; (2) introduced by
anti-patterns

3 Test whether non-experts efficiently identify
problems by following the notion of
anti-patterns for identifying modeling
problems

experiment was performed in one class, and the second and
the third experiment were performed in another class4.

5.3 Experiment procedure

During the course (related to all experiment), the participants
studied the syntax and semantics of the class-diagram lan-
guage. The experiments were executed in several stages as
described in Table 4.

The modeling problems selected for identification for
the experiments were those that represent a variety of con-
straints interactions and were given special emphasis in

4 The numbers of participants in the second and third experiments are
different since the second experiment was voluntary while the third was
part of an exam.

class. The anti-patterns that address these problems were
elaborated in the previous section. The chosen problems
cover most constraints studied in the course, at various lev-
els of difficulty. They involve the multiplicity, composi-
tion, association-class, class hierarchy, and disjoint-GS con-
straints. The difficulty level is assessed by the number of
constraints involved, types of constraint (for example, mul-
tiplicity is simpler than class hierarchy), and the diagram
structure (existence of cycles and sequences of associations
etc.). The Diamond, PMC, and PCC anti-patterns have sim-
ple identification structures, each involving only two kinds of
constraints. The HMC anti-pattern is similar to the PMC in
its identification structure but involves class hierarchy. The
AHC anti-pattern includes the association-class, multiplicity
and class-hierarchy constraints, and its identification struc-
ture involves a sequence of associations.

123

M. Balaban et al.

Table 4 Stages of the experiments

Exp. number Stage 1 Stage 2 Stage 3 Stage 4

1 All students were taught the
syntax and semantics of
class diagrams, including
the introduction of
consistency and finite
satisfiability modeling
problems

The first group received a
class diagram (topic:
university management
systems) and had to
identify modeling
problems

The students were shown
concrete examples with
modeling problems as in
Fig. 5. The students were
not exposed to the
anti-pattern catalog

The second group received
the same class diagram
(topic: university
management systems) and
had to identify modeling
problems

2 The students received a
class diagram (topic:
university management
system) and had to
identify modeling
problems

The students were taught
the notion of anti-patterns
for model correctness, the
pattern specification
language, and were
exposed to the pattern
catalog

The students received
another class diagram
(topic: library
management system) with
the same modeling
problems and had to
identify modeling
problems

3 The students were taught
the notion of anti-patterns
for model correctness, the
pattern specification
language, and were
exposed to the pattern
catalog. They also had
home assignment
regarding the
identification of modeling
problems

The students received a
synthetic class diagram
(domain agnostic) and had
to identify modeling
problems

The most complex identification structure is that of
the DisPath anti-pattern, which includes class-hierarchy,
disjoint-GS constraints, and sequences of associations
between subclasses to their superclass. In all experiments,
we had a pre-defined solution. We checked whether students
identified the problems, and whether they provided proper
explanations.

5.4 Results

In the following, we present the results of the three exper-
iments. Table 5 presents the results of the first experiment.
The numbers in the first two rows indicate the average identi-
fication percentage of the students within each group, and the
last row presents the statistical significance level. It clearly
shows that the second group achieved better results. Apply-
ing the Mann–Whitney test5, we found out that most of the
differences were statistically significant (these are marked in
bold). The results indicate that by increasing the awareness of
students to modeling problems via concrete examples, they
were able to better identify modeling problems. Thus, we
reject the null hypothesis and state that indeed there is a dif-
ference between the number of problems identified by non-
experts when introducing modeling problems by (1) general

5 The Mann–Whitney test is a nonparametric statistical hypothesis test
for assessing whether one of two sets of independent observations tends
to have larger values than the other [29].

explanations or (2) concrete problem examples, in favor of
the latter option.

Table 6 presents the results of the second experiment.
Here, again the numbers in the first two rows indicate the
average identification percentage of the students within each
of the groups (in that case rounds), and the last row presents
the statistical significance level. Following the Wilcoxon rank
test6, the results indicate a significant difference (these are
marked in bold) between the number of problems that non-
experts identify when general comments on modeling prob-
lems and anti-patterns are introduced (in favor of the anti-
patterns). Thus, we reject the null hypothesis and state that
indeed there is a difference between the number of prob-
lems identified by non-experts when provided with general
explanation of modeling problems and when introducing
anti-patterns, in favor of introducing the anti-patterns. There-
fore, it is obvious that an increased awareness of modeling
problems by means of introducing anti-patterns results in an
improved ability to identify problems in erroneous models.

Observing the results of the second experiment, we were
interested in checking the extent to which anti-patterns help
in identifying only modeling problems that occur in the given
class diagrams. To reach this goal, we set up the third exper-
iment in which we compared the number of identified prob-

6 The Wilcoxon signed-rank test is a nonparametric statistical hypoth-
esis test used when comparing two related samples (in our case, each
student had two comparable observations) [30].

123

A pattern-based approach

Table 5 Results of the first
experiment

Diamond AHC PMC HMC DisPath PCC Total

Group 1—before 38.89 57.41 57.41 22.22 24.07 61.11 43.52

Group 2—after 66.66 61.11 94.44 61.11 27.78 88.89 66.67

Sig. 0.056 0.788 0.006 0.009 0.868 0.037 0.002

Table 6 Results of the second
experiment XORSub Diamond DisCom PCC DisPath Total

Before 80 35 20 47.5 15 39.5

After 90.5 90 90 77.5 60 80

Sig. 0.059 0.00 0.00 0.07 0.00 0.00

lems to the overall actual number of problems in the given
diagram. We further used standard information retrieval mea-
surements, namely precision, recall, and F-measure [31], for
measuring the identification accuracy. Precision measured
the fraction of the number of correct problems identified with
respect to the number of identified problems; recall measured
the fraction of the number of correct problems identified with
respect to the number of modeling problems in the diagram;
F-measure, which is a standard derived metric defined as the
harmonic mean of precision and recall, explains the trade-off
between the precision and recall. It was calculated as follows:

F-measure = 2 · precision · recall

precision + recall
.

The average recall was 85.58 %, which means that the
students identified the existing problems to a large extent.
The average precision was 66.39 %, which means that they
also found non-existing problems, but to a smaller extent.
The F-measure was 73 %.

5.5 Discussion

Summarizing the results, we found out that an increased
awareness to modeling problems improves the identifica-
tion rate of modeling problems in class diagrams. Also, the
identification rate improved remarkably when anti-patterns
were introduced. Introducing concrete examples improves
the problem identification by 50 % (from 43.52 to 66.67 %),
whereas introducing anti-pattern improves the problem iden-
tification by 100 %. (from 39.5 to 80 %). Concrete examples
become non-effective for problems with complex interac-
tions and structures. For example, in the case of the DisPath
problem (shown in Fig. 5d), introducing an example did not
improve the students’ results (see Table 5). We assume that
this example fails to capture the pattern’s complex structure:
A GS with a collection of subclasses (the example presents
only two subclasses) and association paths from the super-
class to its subclasses, that would enable the problem identi-
fication. Indeed, after introducing the patterns in the second
experiment, the students show significant improvement, as
illustrated in Table 6. The identification structure of DisPath

(Fig. 17a) captures the abstract structures of the patterns using
association paths and class collection.

We believe that providing anti-patterns improves the stu-
dents’ ability to identify modeling problems as these consist
of abstract and accurate specification of the problems. Yet,
due to different settings of the two experiments, we were
unable to statistically justify the results. Only further exper-
iments will allow checking the impact of introducing anti-
patterns instead of concrete examples.

5.6 Threats to validity

The results of the experiments need to be considered in view
of several threats to validity:

Construct validity threats concerns the relationships
between theory and observation, which are mainly due to
the method used to assess the outcomes of tasks. In this
study, we examined a specific approach and a set of mod-
eling problems. Thus, the results may be influenced from
these selections. However, reviewing other anti-patterns,
we found that we addresses representative portion of mod-
eling problems.

Internal validity threats concerns external factors that may
affect the dependent variables, which may be due to indi-
vidual factors such as familiarity with the domain, the
degree of commitment of the subjects, and the training
level that the subjects underwent (e.g., the examples used).
All subjects had similar background of the domains, they
share similar commitments, and although training include
examples, their selection was of low importance as we
explicate their generalization. The various factors men-
tioned are mitigated by the experiment designs that we
chose. That is, we used one-factor experiment design with
two treatments and random assignments that should elim-
inate the possible threats.

Conclusion validity threats concerns the relationship
between the treatment (the additional education) and the
outcome. We followed the various assumptions of the sta-
tistical tests when analyzing the results. For example, when
data normality could not be assumed, we performed a sta-

123

M. Balaban et al.

tistical analysis using nonparametric tests. Also, subjectiv-
ity was reduced as we had a pre-defined solution that con-
sists of the modeling problems. Nevertheless, human judg-
ment was required when analyzing the students’ explana-
tions.

External validity threats concerns the ability to general-
ize the results. The main threat in this area stems from
the choice of subjects and from using simple tasks in the
experiment. The subjects were bachelor students with lit-
tle experience in modeling but they represent a popula-
tion of modelers. We believe that the students were much
more model oriented than practitioners as they learned in-
depth the class-diagram syntax and semantics. More gen-
erally, [32] argue that using students as subjects instead
of software engineers is not a major issue, as long as the
research questions are not specifically focused on experts,
as is the case in this study. The tasks used in the first exper-
iments were limited in their size (i.e., only one class dia-
grams) to allow sufficient time for identifying the model-
ing problems. However, these were complex enough and
consisted of several problems. Thus, we believe that this
kind of threat is eliminated. We think that further studies
are required to further generalize the results and further
refined their causes.

6 Related work

Patterns and anti-pattern research and collections span a wide
range of paradigms, like human–computer interfaces [6],
Web site design [33] pedagogy [3, 4], and software design
[8, 34–36]. The latter has gained much attention as stressed
by [37]. Addressing patterns and anti-patterns requires the
definition of suitable languages, the classification of pat-
terns (mostly in catalogs), and the training (and educating)
with these. A variety of approaches for pattern formalization
(some of which are surveyed below) is included in [38].

In Sect. 6.1, we discuss approaches to the design of lan-
guages of modeling patterns, in Sect. 6.2, we review exist-
ing anti-pattern catalogs, and finally, in Sect. 6.3, we survey
empirical studies that check issues related to teaching design
patterns.

6.1 Languages for specification of modeling patterns

In this subsection, we analyze languages of modeling patterns
in light of several properties that are defined below. We divide
the properties into language and pragmatic categories. The
language properties are the following:

1. The approach property refers to the mathematical theory
or modeling approach.

2. The supported abstractions property refers to the kinds
of concepts that the pattern language supports.

3. The pattern sensitivity property refers to whether the
modeling language is changed upon addition or modifi-
cation of patterns.

4. The model/domain dependency property examines whe-
ther pattern specification relies on model or domain-
specific terminology, i.e., relies on an associated meta-
model or a domain model.

5. The pattern instantiation property refers to the rules for
deriving concrete cases from patterns, whether these rules
are language specific or standard instantiation rules.

The pragmatic properties are the following:

1. The visualization property checks whether pattern visu-
alization (assuming that there is one) introduces new
visual syntax with respect to the modeling language or
domain, and to what extent.

2. The applications property refers to whether any indica-
tion for using the language is reported, e.g., case studies
or experiments.

3. The support property looks at the various means provided
in order to use the language, e.g., examples, a public cat-
alog and a publicly available detection tool.

We demonstrate our analysis on two notable approaches
RBML [24], and VPML [39], and shortly describe other
approaches we reviewed. The analysis is classified into lan-
guages that are based on a Pattern model, and languages
that are based on other abstraction means, such as Variable,
Function, and Collection abstractions. We summarize with
an inclusive property comparison of all surveyed approaches.

6.1.1 Languages that are based on a pattern meta-model

The RBML specification [24, 40, 41]: France et al. [24] intro-
duce a role-based modeling language for patterns, based on
the UML meta-model. For each pattern, the UML meta-
model is extended with pattern-specific meta-classes that
correspond to roles in the pattern. For example, the Compos-
ite pattern of [8], whose identifying structure is described in
Fig. 9a, would be specified by the meta-model in Fig. 21. This
meta-model specializes the highlighted UML meta-classes
by adding three meta-classes for the Composite, Leaf, and
Component roles, three meta-classes ComponentGeneraliza-
tionSet, LeafGeneralization, and CompositeGeneralization
for the generalization roles Composite ≺ Component and
Leaf ≺ Component, and three meta-classes ComposedOf,
Child, and Parent for the association between Composite and
Component. The pattern-specific meta-classes can be further
constrained using OCL [42, 43]. The addition of new classes

123

A pattern-based approach

Fig. 21 The meta-model
specification of [24] for the
identification structure of the
Composite design pattern

Classifier Role 1..*
|Compnent

Classifier Role 1..*
|Composite

Classifier Role 1..*
|Leaf

1 |parent

1..* |child

Generalization Role
|CompositeGeneralization 1..*

Generalization Role
|LeafGeneralization 1..*

|super

|sub |sub

|super Association Role
|ComposedOf 1..*

Fig. 22 The Composite pattern in the RBML language (extracted and
simplified from [41])

to the meta-model when introducing new patterns makes the
approach pattern sensitive.

The precise meta-model specification is not cognitively
effective, as it hides the intended Composite design pat-
tern structure behind the details of the syntax specifica-
tion. Thus, in [40], the authors proposed a visual con-
crete syntax representation, entitled RBML, that uses a class
diagram like notation. Figure 22 presents the RBML ver-
sion for the solution structure of the Composite design pat-
tern.

Instantiation of RBML patterns into concrete cases requi-
res acquaintance with its meta-model. For example, special-
ization in the graphics domain, as in Fig. 9b, requires role-
based instantiation for the associations in the RBML pattern:
The associations with the Generalization role are instantiated
by class-hierarchy constraints, while the association with
the Association role is instantiated by a binary association.
RBML uses multiplicity constraints to restrict the number of
elements playing the role in a denoted (conforming) class
diagram. The 1..1 multiplicity on the parent property spec-
ifies that an instance of Component (i.e., a class) can have

only one property with the ComposedOf association. This
interpretation is different from the UML semantics of multi-
plicity constraints, which refers to the number of objects that
can be related.

The VPML specification [44]: VPML is a visual language
for specification of design patterns in a given domain model7.
It is introduced by a MOF-based generic Pattern model,
associated with concrete visual syntax for instances. VPML
enables pattern abstraction using contextual properties writ-
ten as OCL derived expressions, pattern composition and
pattern variability. The latter supports pattern conditions,
corollaries, variants, and parametrization of role attributes
whose type is primitive. The VPML visualization is similar
to a class diagram, with specific visualization for external
or internal roles in patterns, for pattern composition, and for
the various variability means. Figure 23 presents the VPML
specification of the Composite design pattern. It uses pattern
composition with an ObjectRecursion pattern, which defines
the general structure of a recursive class hierarchy.

The rules for instantiation of patterns into concrete cases
are not explicitly discussed in VPML, but are implemented
within their detection tool, using its PResults DSML for
reporting detected pattern occurrences8.

7 Epattern [39] is an earlier MOF-based visual language of these
authors.
8 VPML is used in an implemented pattern detection tool (done by
mapping to a QVTr model transformation). Two case studies of pat-
tern detection, involving the GoF patterns and control flow patterns in
BPMN, are reported.

123

M. Balaban et al.

Composite

ObjectRecursion

Composite:ClassComponent:ClassLeaf:Class

Handler RecursorTerminator

1 2

Fig. 23 The VPML specification of the Composite design pattern

The specification of patterns in RBML and in VPML is
role-based. But, while RBML extends the pattern model with
pattern-specific roles, the generic Pattern model of VPML is
not affected by specific patterns. VPML patterns are spec-
ified as instances of the pattern language and rely on an
associated meta-model or domain specific. That is, RBML
is pattern sensitive, while VPML is model or domain depen-
dent.

Bottoni et al. [45–47] introduce a Category theory based
pattern specification language that models multiple aspects of
patterns. They capture variable components in patterns, role
interaction, pattern expansion (including multiple instantia-
tions), addition of positive and negative invariants, pattern
composition, and conflict analysis. Formulation of the solu-
tions of all GoF patterns is demonstrated, as well as, support
for completion of models, based on given patterns. Their
approach is similar to that of VPML in having a generic
Pattern model, indicating that it is not sensitive to pattern
modification, and like VPML, it is model dependent, since
it relies on an associated meta-model. For pattern visu-
alization, the approach uses the conventions of the mod-
els to which the patterns apply, with few additional nota-
tions.

Kim and Carrington [48] formulate in Object-Z a generic
Pattern model, that includes behavior aspects. For each
pattern, the generic model is extended with information
about the pattern-specific roles. Therefore, like RBML, this
approach is pattern sensitive. They demonstrate the formu-
lation of the solutions to some creational, structural, and
behavioral GoF patterns. Pattern instantiation (binding) in
class diagrams, is also formulated, including constraints for
its validity. This Object-Z-based language is not associated
with a visual concrete syntax language.

Guennec et al. [49, 50] suggest to extend the UML meta-
model with pattern-oriented stereotypes, so that patterns and
their occurrences can be simultaneously specified in UML.
They point to limitations of UML constructs such as parame-
trized collaborations and collaboration usage to account for
design patterns, and demonstrate how using the suggested
stereotypes some solutions to GoF patterns can be speci-
fied and instantiated. They also suggest that full account
to behavioral aspects of patterns requires using temporal

operators. Their visualization uses standard UML graph-
ics.

Mens and Tourwe [51] suggest using a declarative meta-
programming approach for pattern management, includ-
ing specification and evolution control. They use the logic
programming language SOUL for formulating a simple
pattern model that supports roles and constraints (predi-
cates pattern, role, patternInstance and patternConstraint).
Instances of patterns are created using the assertion mech-
anism of logic programming (the createPattern predicate).
This framework is further developed for supporting pat-
tern transformation, including refactoring and pattern merge,
that are associated with conflict detection and resolu-
tion.

Maplesden et al. [52, 53] present the visual DPML lan-
guage which is based on a class-diagram-oriented pattern
model, that is based on the concepts of participant, dimen-
sion, binary relation and constraint. The dimension con-
cept accounts for participant repetition. The pattern model
is extended to account for pattern instantiation concepts.
The language provides visualization for the main participant
types, and for the dimension concept. The associated tool
supports pattern instantiation.

6.1.2 Languages that are based on general mathematical
abstractions

Eden et al. [54–56] present the Codecharts visual language,
designed to support software design round trip, i.e., mod-
eling, analysis, and conformance activities. Codecharts has
a small set of primitives that represent the notions of Class,
Binary-relationship, Signature, Hierarchy and Isomorphism.
Its abstraction means consist of the Variable and Dimension
concepts. The latter captures high-order sets of Codecharts
elements. The formal foundation of Codecharts relies on
translation to first-order predicate logic. Codecharts is sup-
ported by a fully automated design verification tool. It has
been used for pattern formulation, e.g., the solutions to GoF
patterns [55, 57], using its Variable and Dimension abstrac-
tion means.

Bayley and Zhu [58] formulate the 23 GoF patterns using
a structured text protocol that is based on first-order predicate
logic. The constraints in pattern specifications refer to a for-
mal specification of a simplified portion of UML in a gram-
matical model (GEBNF) that is associated with constraints
written in first-order predicate logic. Their pattern formula-
tion includes specification of static and dynamic conditions,
and enables specification of pattern variants. No visualiza-
tion is provided. They report on a detection tool and a case
study that shows the importance of behavioral conditions in
the GoF patterns.

Ballis et al. [59, 60] present a visual pattern notation that is
based on three visual pattern constructors: Replication, hier-

123

A pattern-based approach

archy, and concatenation. The intention is to express possi-
ble repetition in pattern instantiation, multiple subclasses in
a hierarchy, and combination of relations. The visual nota-
tion is translated into a functional language, for which an
instance detection algorithm is provided. In terms of sup-
ported abstractions, this approach supports variable abstrac-
tion and some restricted forms of collections. The language
is used for representing the GoF patterns and some anti-
patterns.

The Pattern Class Diagram (PCD) language, which is
used in our catalog, supports abstraction over class diagrams.
It is abstraction-based rather than role-based. It does not
assume a Pattern model, since the correctness anti-patterns
in our catalog hardly have a role notion. The supported
abstractions include variable, set and sequence. The vari-
able abstraction can apply to any type in the class-diagram
model. The set abstraction (unordered collection) applies to
classes, and the sequence abstraction applies to associations,
aggregations, and hierarchies. PCD sequences can consist of
mixed type elements, an abstraction feature not supported
by any of the above languages. The language is oblivious to
domain models, and to addition, removal, or modification of
patterns. Pattern visualization is clearly distinguished from
pattern instantiation, and the instantiation rules do not require
acquaintance with the language meta-model. PCD is a class-
level language. Therefore, object-level constraints, which are
needed for pattern verifications in the catalog, require object-
level languages, like OCL [43], F-OML [61] or first-order
predicate logic.

6.1.3 Property-based comparison of the reviewed
languages

The comparison is summarized in two tables below. Table 7
summarizes the language properties of the pattern spec-
ification languages that we have reviewed, and Table 8
summarizes the pragmatic properties. Note that among
the languages that are Pattern model based, the Pattern
sensitivity and the model/domain dependency are comple-
mentary features. This is not surprising, since the infor-
mation about the underlying model/domain must be pro-
vided somewhere—either added to the generic model within
pattern-specific roles, or as an associated model to patterns.
Also, the role abstraction for the ones that are pattern sen-
sitive is model-tailored. All languages that are not Pattern
model based, include various kinds of Variable abstrac-
tions.

6.2 Catalogs of modeling patterns

The experiments described in the previous section show that
awareness of developers to modeling problems meaningfully
improves their analytic skills. Therefore, having support for

pattern specification and usage is an important aspect in mod-
eling training. Yet, in spite of the multiple suggestions for
languages for modeling patterns, there are very few catalogs
for supporting modeling activities.

Tanriover and Bilgen [21, 62] present a set of anti-patterns
for semantic and quality problems in the structural and behav-
ioral aspects of UML. Anti-patterns are conceived as an inte-
gral part of what they term the modeling inspection process9,
an approach for improving the quality of models. The spec-
ification of anti-patterns uses concrete examples and textual
descriptions. No pattern specification language is used. The
catalog includes anti-patterns for some class diagram con-
sistency problems like the Diamond anti-pattern, and for the
finite satisfiability problem that results from the interaction of
multiplicity constraints on a unary association (as in Fig. 3a).
The anti-patterns refer only to a subset of the class-diagram
constraints.

Elaasar et al. [28, 63] introduce a catalog of modeling
anti-patterns. It refers to the UML and the MOF modeling
languages. The anti-patterns in the catalog are grouped into
four categories:

1. MOF and UML syntax anti-patterns: The syntac-
tic problems are based on the MOF and UML well-
formedness rules [12]. For example Classifier Has Gen-
eralization Cycle is a UML anti-pattern that characterizes
illegal generalization cycles in UML.

2. Semantic anti-patterns: The anti-patterns in this cate-
gory capture syntactic quality problems, i.e., redundant
or incomplete design problems. Correctness problems,
i.e., consistency and finite satisfiability problems, are not
handled.

3. Convention anti-patterns: This category includes anti-
patterns that capture common violations of conventions,
such as naming (e.g., a non-alphabetic name of an Ele-
ment) and documentation conventions.

4. Notational problems: The anti-patterns in this cate-
gory capture quality problems, such as completeness
or clarity of visual representations with respect to their
metamodel.

The anti-patterns are written in the QVTr language of the
MOF [64] and are intended to support automatic detection
of modeling problems in models, based on their specifica-
tions in terms of the meta-model. The VPML visual lan-
guage of these authors [65, 66] is intended to turn the cat-
alog more accessible, using the translation from VPML to
QVTr.

The anti-pattern catalog described in this paper includes
anti-patterns for the major correctness problems in class dia-
grams. These patterns are not provided in either of the above

9 Similarly to code inspection.

123

M. Balaban et al.

Ta
bl

e
7

L
an

gu
ag

e
pr

op
er

tie
s

of
pa

tte
rn

sp
ec

ifi
ca

tio
n

la
ng

ua
ge

s

A
pp

ro
ac

h
Su

pp
or

te
d

ab
st

ra
ct

io
ns

Pa
tte

rn
se

ns
iti

vi
ty

M
od

el
/d

om
ai

n
de

pe
nd

en
cy

Pa
tte

rn
in

st
an

tia
tio

n

P
at

te
rn

m
od

el
ba

se
d

R
B

M
L

M
et

a-
m

od
el

in
g

M
od

el
-t

ai
lo

re
d

ro
le

,
m

ul
tip

lic
ity

,r
ol

e
bi

nd
in

g
Y

es
N

o
M

et
a-

m
od

el
in

st
an

tia
tio

n

V
PM

L
M

et
a-

m
od

el
in

g—
M

O
F-

ba
se

d
Pa

tte
rn

-r
ol

e,
ro

le
in

te
r-

re
la

tio
ns

hi
p,

pa
tte

rn
de

pe
nd

en
cy

,r
ol

e
bi

nd
in

g

N
o

Y
es

N
o

ex
pl

ic
it

ru
le

s
(e

m
be

dd
ed

in
th

e
de

te
ct

io
n

to
ol

)

B
ot

to
ni

,G
ue

rr
a

an
d

L
ar

a
C

at
eg

or
y

th
eo

ry
Pa

tte
rn

-r
ol

e,
va

ri
ab

le
,

re
pe

tit
io

n
N

o
Y

es
V

ar
ia

bl
e

su
bs

tit
ut

io
n

w
ith

re
pe

tit
io

n

K
im

an
d

C
ar

ri
ng

to
n

O
bj

ec
t-

Z
M

od
el

-t
ai

lo
re

d
ro

le
s,

ro
le

in
te

r-
re

la
tio

ns
hi

p
Y

es
N

o
R

ol
e

bi
nd

in
g

(t
ex

t)

G
ue

nn
ec

,S
un

ye
an

d
Je

ze
qu

el
M

et
a-

m
od

el
in

g
N

o
Y

es
<

<
m

et
a

>
>

,

<
<

in
st

an
ce

>
>

st
er

eo
ty

pe
s

M
en

s
an

d
To

ur
w

e
D

ec
la

ra
tiv

e
m

et
a-

pr
og

ra
m

m
in

g
us

in
g

SO
U

L

Pa
tte

rn
-r

ol
e,

va
ri

ab
le

N
o

Y
es

V
ar

ia
bl

e
su

bs
tit

ut
io

n

D
PM

L
M

et
a-

m
od

el
in

g,
U

M
L

Pa
tte

rn
-p

ar
tic

ip
an

t,
re

pe
tit

io
n,

pa
rt

ic
ip

an
t

bi
nd

in
g

N
o

Y
es

Pa
tte

rn
in

st
an

tia
tio

n
m

et
a-

m
od

el

M
at

he
m

at
ic

al
ab

st
ra

ct
io

ns

C
od

ec
ha

rt
s

(L
eP

U
S)

L
og

ic
V

ar
ia

bl
e,

hi
gh

-o
rd

er
se

ts
N

o
Y

es
V

ar
ia

bl
e

su
bs

tit
ut

io
n

B
al

lis
,B

ar
uz

zo
an

d
C

om
in

i
Fu

nc
tio

na
l

V
ar

ia
bl

e,
su

bc
la

ss
-c

ol
le

ct
io

n,
re

pe
tit

io
n

N
o

Y
es

V
ar

ia
bl

e
su

bs
tit

ut
io

n
w

ith
re

pe
tit

io
n,

su
bc

la
ss

-c
ol

le
ct

io
n

ex
pa

ns
io

n

PC
D

Se
t-

th
eo

re
tic

ab
st

ra
ct

sy
nt

ax
Ty

pe
d

va
ri

ab
le

,c
ol

le
ct

io
n

N
o

Y
es

V
ar

ia
bl

e
su

bs
tit

ut
io

n,
co

lle
ct

io
n

ex
pa

ns
io

n

123

A pattern-based approach

Table 8 Pragmatic properties of pattern specification languages

Visualization Applications Support

Pattern model based

RBML Model-tailored; special
semantics

Editor, examples, pattern
detection tool

VPML UML notation for pattern
collaboration, special
visualization for pattern-roles
and role inter-relationships

Detection tool applied to
GoF and to control
flow patterns in BPMN

Online catalog, examples, all
GoF patterns, translation to
QVTr, pattern detection tool

Bottoni, Guerra and Lara Model-tailored – Examples in structural and
interaction domains, all GoF
patterns

Kim and Carrington No visualization support
is provided

– Few GoF examples

Guennec, Sunye and Jezequel UML-based – GoF examples, Pattern instanti-
ation, Pattern detection

Mens and Tourwe No visualization
support is provided

– Few GoF examples

DPML New pattern
visualization language

Usage
experiments

Gof examples, pattern
instantiation tool with
consistency analysis

Mathematical abstractions

Codecharts (LePUS) Codecharts new
notation

Software design
and accuracy
experiments

All GoF patterns, fully
automated modeling, code-
generation and correctness
tool

Bayley and Zhu No visualization
support is provided

– All GoF patterns

Ballis, Baruzzo and Comini New notation – GoF examples

PCD Extended class
diagram

Education-
targeted
experiments

Online catalog, examples

catalogs. Pattern presentation is cognitively effective, due to
the PCD visual language that is used for writing identifi-
cation structures and suggested repairs. The purpose of the
catalog is twofold. First, it has an educational role, and thus
all patterns are introduced with all pattern related informa-
tion as described in Sect. 4.2. Second, PCD specification is
used as input for the detection tool that is currently under
construction.

6.3 Empirical studies about teaching design patterns

Design patterns do not form an organized structured the-
ory. Therefore, teaching and learning design patterns is a
non-trivial task. Their abstract, somewhat scattered nature,
poses difficulties for students and educators. In particular,
understanding the context of patterns (when to apply a pat-
tern) is a major problem. Indeed, it is well known that
the learning curve for properly using design patterns is
slow.

Multiple studies deal with issues concerning teaching
design patterns and its impact [67–74]. Chatzigeorgiou et al.
[74] present an observational study of student ability to

understand and apply design patterns before and after pat-
terns are introduced. The conclusion is that patterns that are
easy to comprehend and apply were frequently used, though
students found it difficult to document exactly which prob-
lems had been solved by each pattern.

Patterns versus anti-patterns in education: Using positive
examples (like design patterns) or negative examples (like
anti-patterns) is a well-known effective educational tool [75–
77], but there is a debate concerning the effectiveness of
the two approaches. The use of anti-patterns in teaching in
general and in teaching human–computer interaction con-
cepts in particular is the subject of [78, 79]. This empiri-
cal study claims that teaching positive examples (patterns)
is significantly more effective than teaching negative exam-
ples (anti-patterns). The authors suggest that negative exam-
ples are incompatible with the internal process of acquir-
ing and representing knowledge. Stamelos et al. [80] argue
against these results and demonstrate the effectiveness of
anti-patterns by two laboratory exercises (in the area of
project management). They further stress that knowledge
represented by anti-patterns is effectively transferred to stu-

123

M. Balaban et al.

dents, and users were able to understand the symptoms,
causes, and consequences arising from the problems in each
anti-pattern.

Bolloju et al. [77] also examine the effectiveness of pat-
terns and anti-patterns. They conducted a controlled experi-
ment using undergraduate students to study the usefulness of
negative and positive examples in teaching object modeling
skills. Their results indicate that both positive and negative
examples are useful, but for different tasks. Positive exam-
ples are recommended for modeling syntactic quality, while
negative examples are appropriate for understanding seman-
tic equality. This result indeed supports our choice for using
anti-patterns, as the main theme of our catalog is semantic
correctness.

7 Conclusion

This paper addresses the educational role of anti-patterns
in improving modeling skills in UML class diagrams. We
presented a catalog of correctness and quality anti-patterns
for class diagrams and discussed its role as an educational
tool. The catalog organizes anti-patterns by correctness or
low-quality problems. Each pattern provides an identifica-
tion structure, proof of the problem, and repair options. The
educational role of the catalog is to increase the awareness
of designers to problematic inter-relationships among mod-
eling elements. To the best of our knowledge, this is the first
catalog that provides an in-depth analysis of causes of cor-
rectness and quality problems, together with repair advices.
The catalog is intended to play an educational role in teaching
object modeling.

We argue that for educational purposes, patterns should
be visually formulated using model-level concepts. To do
this, we extend the UML class-diagram meta-model with new
classes that capture new abstractions needed for pattern spec-
ification such as compound structures of class-diagram ele-
ments and variables that range over class-diagram elements.
The enhancement introduces new notations such as collec-
tions and association paths. The advantage of this approach
lies in its generality and simplicity. The new abstractions
enjoy visualizations that are directly associated with their
intended meanings.

In order to examine the extent to which an awareness of
modeling problems helps identify erroneous models, we con-
ducted two experiments: The first examined the impact of
anti-patterns when they appeared as concrete examples; the
other checked the impact of anti-patterns when presented as
pattern class diagrams. Both experiments showed that anti-
patterns had a significant positive impact: Students were able
to identify modeling problems after being exposed to anti-
patterns. Moreover, the results showed that the identifica-

tion rate improved significantly when anti-patterns were pre-
sented using pattern class diagrams.

Following the results of this research, we plan to weave the
catalog in the class material of our object modeling courses.
We also plan to extend the catalog with patterns of typi-
cal OCL idioms, and possibly add design patterns for class-
diagram modeling. We are in the process of integrating the
catalog with our reasoning FiniteSatUSE tool [81], in order
to produce a human understandable explanation and repair
advice for the identified problems10.

A different future direction involves full implementation
of the PCD language, including an associated constraints
language (either OCL [43] or FOML [61] based). We intend
to develop a tool that will use the PCD language for class-
diagram querying, testing, and identification of structural
patterns. In particular, this tool will be used for identifica-
tion of patterns that are not identified by the FiniteSatUSE
tool.

Acknowledgments We thank Adiel Ashrov for his help in the con-
struction of the online catalog. We are also indebted to the referees for
providing detailed comments that helped in improving the paper.

Appendix: the forms in the experiments

In this Appendix, we provide the material of the three exper-
iments. For each experiment, we first provide the used class
diagrams, followed by tables that indicate pattern occur-
rences in those class diagrams.
The first experiment: This experiment examines the effect
of introducing concrete examples of modeling problems to
non-experts, on their ability to identify problems in class
diagrams. The experiment form includes the class diagram
in Fig. 24, for a university management system. Table 9 lists
the occurrences of the anti-patterns Diamond, AHC, PMC,
HMC, DisPath, and PCC in this class diagram.
The second experiment: This experiment examines the
effect of introducing anti-patterns of modeling problems
to non-experts, on their ability to identify problems in class
diagram. In this experiment, we used two class diagrams:

1. The class diagram in Fig. 25, which is an extended version
of the university management system from the first exper-
iment, was used before introducing the anti-patterns.

2. The class diagram in Fig. 26, which describes a library
management system, was used after introducing the anti-
patterns.

10 This integration is not intended to produce automatic repairs, but just
to suggest repair options.

123

A pattern-based approach

Fig. 24 The class diagram used
in the first experiment (the
university management system)

Table 9 Pattern occurrences the class diagram used in the first experi-
ment

Pattern type Pattern occurrences

Diamond Course-GraduateCourse-UnderGraduateCourse-
Elective

AHC Course-Enrollment-Student-Graduate-Academic-
FacultyMember

PMC Admin

HMC Student-Course-FacultyMember-Academic-Graduate

DisPath Student-Resident-NonResident

PCC AcademicUnit

Tables 10 and 11 list the occurrences of the anti-patterns
XORSub, Diamond, DisCom, PCC, and DisPath in these
class diagrams.
The third experiment: This experiment examines the effi-
ciency of problem identification after the anti-patterns were
introduced. In this experiment, we used the synthetic class
diagram shown in Fig. 27. Table 12 lists the occurrences
of the anti-patterns PMC, HMC and AHC in this class
diagram.

123

M. Balaban et al.

F
ig

.
25

T
he

cl
as

s
di

ag
ra

m
us

ed
in

th
e

se
co

nd
ex

pe
ri

m
en

tb
ef

or
e

in
tr

od
uc

in
g

th
e

an
ti-

pa
tte

rn
s

(t
he

ex
te

nd
ed

un
iv

er
si

ty
m

an
ag

em
en

ts
ys

te
m

)

123

A pattern-based approach

F
ig

.
26

T
he

cl
as

s
di

ag
ra

m
us

ed
in

th
e

se
co

nd
ex

pe
ri

m
en

ta
ft

er
in

tr
od

uc
in

g
th

e
an

ti-
pa

tte
rn

s
(t

he
lib

ra
ry

m
an

ag
em

en
ts

ys
te

m
)

123

M. Balaban et al.

Table 10 Pattern occurrences in
the class diagram used in the
second experiment before
introducing the anti-patterns

Pattern type Pattern occurrences

XORSub Graduate Studies-Student-Degree

Diamond Course-UnderGraduateCourse-GraduateCourse-SpecialCourse

DisCom Preference-SpechialDegree-EngineeringSciences-NaturalSciences-DirectPhD-Master
Studeis-GraduateStudies

PCC AcademicUnit

DisPath Unit-AcademicUnit-Administrative

Table 11 Pattern occurrences in
the class diagram used in the
second experiment after
introducing the anti-patterns

Pattern type Pattern occurrences

XORSub Librarian-Catalog

Diamond Academic-FacultyMember-GraduateStudent-PhdStudent-ExternalPhdStudent

DisCom Subject-Biology-NatureComputerScience-MetabolicComputing-Bioinformatics

PCC BibliographyCategory

DisPath User-Student-Academic-Journal-Copy

Fig. 27 The synthetic class diagram used in the third experiment

123

A pattern-based approach

Table 12 Pattern occurrences in the class diagram used in the third
experiment

Pattern type Pattern occurrences

PMC A-C-F-G-D-B

HMC B-L-H-K

AHC J-M-I

References

1. Lindland, O., Sindre, G., Sølvberg, A.: Understanding quality in
conceptual modeling. IEEE Softw. 11, 42–49 (1994)

2. Alexander, C.: The Timeless Way of Building, vol. 1. Oxford Uni-
versity Press, Oxford (1979)

3. The Pedagogical Patterns Project. http://www.pedagogicalpatt
erns.org (2010)

4. Commission, E.: The E-Len Project. http://www2.tisip.no/E-LEN/
patterns_info.php (2008)

5. Rising, L. (ed.): Design Patterns in Communications Software.
Cambridge University Press, New York, NY (2001)

6. Borchers, J.: A Pattern Approach to Interaction Design, 1st edn.
Wiley, London (2001)

7. Fowler, M.: Analysis Patterns: Reusable Object Models. Addison-
Wesley, Reading, MA (1997)

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Pat-
terns: Elements of Reusable Object-Oriented Software, vol. 206.
Addison-Wesley, Reading, MA (1995)

9. Brown, W., Malveau, R., McCormick, H., Mowbray, T.: AntiPat-
terns: Refactoring Software, Architectures, and Projects in Crisis.
Wiley, New York (1998)

10. Makarenkov, V., Jelnov, P., Maraee, A., Balaban, M.: Finite satisfi-
ability of class diagrams: practical occurrence and scalability of the
finitesat algorithm. In: MoDeVVa ’09: Proceedings of the 6th Inter-
national Workshop on Model-Driven Engineering, Verification and
Validation, pp. 1–10. ACM (2009)

11. Balaban, M., Maraee, A., Sturm, A.: Management of correct-
ness problems in UML class diagrams: towards a pattern-based
approach. Int. J. Inf. Syst. Model. Des. 1, 24–47 (2010)

12. OMG: UML 2.4 Superstructure Specification. Specification Ver-
sion 2.4.1. Object Management Group (2011)

13. Balaban, M., Maraee, A.: Finite satisfiability of UML class dia-
grams with constrained class hierarchy. ACM Trans. Softw. Eng.
Methodol. (TOSEM) 22(3), Article 24, [42 pages] (2013). doi:10.
1145/2491509.2491518

14. Maraee, A., Balaban, M.: Inter-association constraints in UML2:
comparative analysis, usage recommendations, and modeling
guidelines. In: MoDELS 2012 (2012)

15. Berardi, D., Calvanese, D., Giacomo, D.: Reasoning on UML class
diagrams. Artif. Intell. 168, 70–118 (2005)

16. Maraee, A., Makarenkov, V., Balaban, B.: Efficient recognition and
detection of finite satisfiability problems in UML class diagrams:
handling constrained generalization sets, qualifiers and association
class constraints. In: MCCM08 (2008)

17. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL
models in USE by automatic snapshot generation. J. Softw. Syst.
Model. 4, 386–398 (2005)

18. BGU Modeling Group. http://www.cs.bgu.ac.il/~modeling/ (2010)
19. Maraee, A., Balaban, M.: Efficient recognition of finite sat-

isfiability in UML class diagrams: strengthening by propaga-
tion of disjoint constraints. In: Proceedings International Con-
ference Model-Based Systems Engineering MBSE ’09, pp. 1–8
(2009)

20. BGU Modeling Group: A Catalog of UML Class Diagram Anti-
Patterns. http://www.cs.bgu.ac.il/~cd-patterns/ (2010)

21. Tanriover, O., Bilgen, S.: A framework for reviewing domain spe-
cific conceptual models. Comput. Stand. Interfaces 33, 448–464
(2011)

22. Llano, M., Pooley, R.: UML specification and correction of object-
oriented anti-patterns. In: ICSEA ’09, pp. 39–44 (2009)

23. Riehle, D.: Lessons learned from using design patterns in industry
projects. In: Transactions on Pattern Languages of Programming
II, vol. 6510 of LNCS, pp. 1–15 (2011)

24. France, R., Kim, D., Ghosh, S., Song, E.: A UML-based pat-
tern specification technique. IEEE Trans. Softw. Eng. 30, 193–206
(2004)

25. Maraee, A.: UML Class Diagrams-Semantics, Correctness and
Quality. PhD thesis, Ben Gurion University of the Negev (2012)

26. Figl, K., Derntl, M., Caeiro Rodriguez, M., Botturi, L.: Cognitive
effectiveness of visual instructional design languages. J. Vis. Lang.
Comput. 21, 359–373 (2010)

27. Moody, D.: The ”physics” of notations: towards a scientific basis
for constructing visual notations in software engineering. IEEE
Trans. Softw. Eng. 35, 756–779 (2009)

28. Elaasar, M., Briand, L., Labiche, Y.: Metamodeling Anti-Patterns.
https://sites.google.com/site/metamodelingantipatterns (2010)

29. Mann, H., Whitney, D.: On a test of whether one of two random
variables is stochastically larger than the other. Ann. Math. Stat.
18, 50–60 (1947)

30. Wilcoxon, F.: Individual comparisons by ranking methods. Bio-
metr. Bull. 1, 80–83 (1945)

31. Manning, C., Raghavan, P., Schtze, H.: Introduction to Informa-
tion Retrieval, vol. 1. Cambridge University Press, Cambridge, MA
(2008)

32. Kitchenham, B.A., Lawrence, S., Lesley, P., Pickard, M., Jones,
P.W., Hoaglin, D.C., Emam, K.E.: Preliminary guidelines for
empirical research. IEEE Trans. Softw. Eng. 28(8), 721–734 (2002)

33. Toxboe, A.: User interface design pattern library. http://ui-patterns.
com/patterns (2011)

34. The Hillside Group: Software Patterns. http://hillside.net/patterns/
links (2010)

35. The AntiPatterns Group: The AntiPatterns Catalog. Cunningham
& Cunningham, Inc. (2010)

36. El-Attar, M., Miller, J.: Improving the quality of use case models
using antipatterns. Softw. Syst. Model. 9, 141–160 (2008)

37. Henninger, S., Corrêa, V.: Software pattern communities: current
practices and challenges. In: Proceedings of the 14th Conference
on Pattern Languages of Programs, pp. 14:1–14:19. PLOP 07, New
York, NY, USA, ACM (2007)

38. Taib, T.: Design Patterns Formalization Techniques. IGI Publish-
ing, Hershey, PA (2007)

39. Elaasar, M., Briand, L., Labiche, Y.: A metamodeling approach
to pattern specification. In: Model Driven Engineering Languages
and Systems, vol. 4199 of LNCSpp, pp. 484–498. Springer, Berlin
(2006)

40. Kim, D.: The role-based metamodeling language for specifying
design patterns. In: Design Pattern Formalization Techniques. GI
Global, pp. 183–205 (2007)

41. Kim, D., El Khawand, C.: An approach to precisely specifying
the problem domain of design patterns. J. Vis. Lang. Comput. 18,
560–591 (2007)

42. Warmer, J., Kleppe, A.: The Object Constraint Language: Get-
ting Your Models Ready for MDA. Addison-Wesley, Reading, MA
(2003)

43. OMG: OMG Object Constraint Language (OCL). Specification
Version 2.3.1. Object Management Group (2012)

44. Elaasar, M., Briand, L., Labiche, Y.: VPML: An Approach to Detect
Design Patterns in MOF-Based Modeling Languages. Technical
Report SCE-10-02, Carleton University (2010)

123

http://www.pedagogicalpatterns.org
http://www.pedagogicalpatterns.org
http://www2.tisip.no/E-LEN/patterns_info.php
http://www2.tisip.no/E-LEN/patterns_info.php
http://dx.doi.org/10.1145/2491509.2491518
http://dx.doi.org/10.1145/2491509.2491518
http://www.cs.bgu.ac.il/~modeling/
http://www.cs.bgu.ac.il/~cd-patterns/
https://sites.google.com/site/metamodelingantipatterns
http://ui-patterns.com/patterns
http://ui-patterns.com/patterns
http://hillside.net/patterns/links
http://hillside.net/patterns/links

M. Balaban et al.

45. Bottoni, P., Guerra, E., de Lara, J.: A language-independent and
formal approach to pattern-based modelling with support for com-
position and analysis. Inf. Softw. Technol. 52, 821–844 (2010)

46. Bottoni, P., Guerra, E., de Lara, J.: Towards a formal notion of
interaction pattern. In: IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), 2010, pp. 235–239 (2010)

47. Bottoni, P., Guerra, E., De Lara, J.: An Algebraic Formalization of
the GoF Design Patterns (2010). ArXiv, preprint arXiv:1003.3338.

48. Kim, S., Carrington, D.: A formalism to describe design patterns
based on role concepts. Formal Aspects Comput. 21, 397–420
(2009)

49. Ho, W., Jézéquel, J., Le Guennec, A., Pennaneac’h, F.: UMLAUT:
an extendible UML transformation framework. In: 14th IEEE Inter-
national Conference on Automated Software Engineering, 1999,
pp. 275–278. IEEE (1999)

50. Le Guennec, A., Sunyé, G., Jézéquel, J.: Precise modeling of design
patterns. In: Proceedings of UML 2000, vol. 482–496 of LNCS,
pp. 482–496. Springer, Berlin (2004)

51. Mens, T., Tourwe, T.: A declarative evolution framework for object-
oriented design patterns. In: Proceedings of the International Con-
ference on Software, Maintenance, pp. 570–579 (2001)

52. Maplesden, D., Hosking, J., Grundy, J.: A visual language for
design pattern modelling and instantiation. In: Proceedings of the
IEEE 338 (2001)

53. Mapelsden, D., Hosking, J., Grundy, J.: Design pattern modelling
and instantiation using DPML. In: Proceedings of the Fortieth Inter-
national Conference on Tools Pacific: Objects for Internet, Mobile
and Embedded Applications. Australian Computer Society, Inc.,
pp. 3–11 (2002)

54. Eden, A.H., Gasparis, A.H., Nicholson, J., Kazman, R.: Modeling
and visualizing object-oriented programs with Codecharts. Form.
Methods Syst. J. 43(1), 1–28 (2013). Published online: http://link.
springer.com/article/10.1007/s10703-012-0181-1/fulltext.html

55. Eden, A.H.: Codecharts: Roadmaps and Blueprints for Object-
Oriented Programs. Wiley, London (2011)

56. Eden, A., Gasparis, E., Nicholson, J.: LePUS3 and Class-Z ref-
erence manual. Technical Report, University of Essex, CSM-474,
ISSN, pp. 1744–8050 (2007)

57. Nicholson, J., Gasparis, E., Eden, A.H., Kazman, R.: Automated
verification of design patterns with LePUS3. In: Proceedings of
the 1st NASA Formal Methods Symposium (NFM09), pp. 76–85.
NASA (2009)

58. Bayley, I., Zhu, H.: Formal specification of the variants and behav-
ioural features of design patterns. J. Syst. Softw. 83, 209–221
(2010)

59. Ballis, D., Baruzzo, A., Comini, M.: A minimalist visual notation
for design patterns and antipatterns. In: Fifth International Con-
ference on Information Technology: New Generations, pp. 51–56.
IEEE (2008)

60. Ballis, D., Baruzzo, A., Cominia, M.: A rule-based method to match
software patterns against UML models. Electron. Notes Theor.
Comput. Sci. 219, 51–66 (2008)

61. Balaban, M., Kifer, M.: Logic-based model-level software devel-
opment with F-OML. In: Model Driven Engineering Languages
and Systems, pp. 517–532. Springer, Berlin (2011)

62. Tanriover, R.: An Inspection Approach for Conceptual Models of
The Mission Space in a Domain Specific Notation. PhD thesis, The
Middle East Technical University, The Department of Information
Systems (2008)

63. Elaasar, M., Briand, L., Labiche, Y.: Domain-specific model veri-
fication with QVT. In: Proceedings of the 7th European conference
on Modelling Foundations and Applications, Vol. 6698 of LNCS,
pp. 282–298. Springer, Berlin (2011)

64. OMG: Mof? query / view / transformation (qvt). Specification Ver-
sion 1.1. Object Management Group (2011)

65. Elaasar, M.: An Approach to Design Pattern and Anti-Pattern
Detection in MOF-Based Modeling Languages. PhD thesis, Elec-
trical and Computer Engineering Dissertation, Carleton University
(2012)

66. Elaasar, M., Briand, L., Labiche, Y.: VPML: An approach to detect
design patterns of MOF-based modeling languages. Software and
Systems Modeling (to appear)

67. Della, L., Clark, D.: Teaching object-oriented development with
emphasis on pattern application. In: Proceedings of the Aus-
tralasian conference on Computing education, pp. 56–63. ACM
(2000)

68. Stuurman, S., Florijn, G.: Experiences with teaching design pat-
terns. In: ACM SIGCSE Bulletin, vol. 36, pp. 151–155. ACM
(2004)

69. Wick, M.: Teaching design patterns in CS1: a closed laboratory
sequence based on the game of life. In: The 36th Technical Sym-
posium on Computer Science Education, SIGCSE 2005 (2005)

70. Dewan, P.: Teaching inter-object design patterns to freshmen. In:
ACM SIGCSE Bulletin, vol. 37, pp. 482–486. ACM (2005)

71. Pecinovský, R., Pavlíčková, J., Pavliček, L.: Let’s modify the
objects-first approach into design-patterns-first. ACM SIGCSE
Bull. 38, 188–192 (2006)

72. Jalil, M., Noah, S., Idris, S.: Assisting students in applying design
pattern solution. In: International Symposium on Information Tech-
nology, 2008, vol. 1, pp. 1–6. ITSim 2008. IEEE (2008)

73. Huang, H., Yang, D.: Teaching design patterns: a modified PBL
approach. In: The 9th International Conference for Young Com-
puter Scientists, pp. 2422–2426. IEEE (2008)

74. Chatzigeorgiou, A., Tsantalis, N., Deligiannis, I.: An empirical
study on students’ ability to comprehend design patterns. Comput.
Educ. 51, 1007–1016 (2008)

75. Haack, P.: Use of positive and negative examples in teaching the
concept of musical style. J. Res. Music Educ. 20, 456–461 (1972)

76. Ali, M.A.: The use of positive and negative examples during
instruction. J. Instr. Dev. 5, 2–7 (1981)

77. Bolloju, N., Schneider, C., Vogel, D.: Asymmetrical effects of using
positive and negative examples on object modeling. In: 18th Inter-
national Conference on Information Systems Development (2009)

78. Kotzé, P., Renaud, K., Biljon, J.: Don’t do this: pitfalls in using
anti-patterns in teaching human–computer interaction principles.
Comput. Educ. 50, 979–1008 (2008)

79. Kotzé, P., Renaud, K., Koukouletsos, K., Khazaei, B., Dearden,
A.: Patterns, anti-patterns and guidelines-effective aids to teaching
HCI principles. In: Proceedings of The First Joint BCS/IFIP WG13.
1/ICS/EU CONVIVIO HCI Educators’ Workshop 2006 (2006)

80. Stamelos, I., Settas, D., Mallini, D.: Teaching software project man-
agement through management antipatterns. In: Panhellenic Confer-
ence on Informatics, pp. 8–12. (2011)

81. BGU Modeling Group: FiniteSatUSE: A Class Diagram Correct-
nessTool. http://sourceforge.net/projects/usefsverif/ (2011)

123

http://link.springer.com/article/10.1007/s10703-012-0181-1/fulltext.html
http://link.springer.com/article/10.1007/s10703-012-0181-1/fulltext.html
http://sourceforge.net/projects/usefsverif/

A pattern-based approach

Mira Balaban received a B.Sc.
in mathematics and statistics
from Tel Aviv University (Israel),
and a M.Sc. and a Ph.D. in com-
puter science from the Weiz-
mann Institute of Science. She
also graduated in music from
the Rubin Academy of Music
in Tel Aviv. She taught at the
Computer Science department in
SUNY Albany NY, and currently
is with the Computer Science
department in Ben-Gurion Uni-
versity in Israel. Her research is
mainly in the area of software

engineering, with emphasis on modeling: Correctness of and reason-
ing about models, modeling languages, and model patterns. Previous
research was in the areas of artificial intelligence, database semantics,
and computer music.

Azzam Maraee is a postdoc-
torate fellow at Ben-Gurion Uni-
versity. He has B.Sc. in math-
ematics, M.Sc. in information
system engineering, and Ph.D.
in computer science all from
Ben-Gurion University, Israel.
His research focuses on software
engineering, with emphasis on
modeling: model correctness and
reasoning, modeling languages,
and model patterns.

Arnon Sturm is a faculty mem-
ber at Ben-Gurion University. He
received his Ph.D. in Information
Management Engineering from
the Technion, Israel Institute of
Technology. His research inter-
ests include modeling, domain
engineering, agent-oriented soft-
ware engineering, and system
development processes. Prior to
his studies, Arnon has gained
extensive experience in develop-
ing software systems in industry.

Pavel Jelnov has a B.Sc. in
statistics and economics (summa
cum laude) and M.Sc. in statis-
tics from Bar-Ilan University. He
is currently a Ph.D. student in
economics at Tel Aviv Univer-
sity and was a visiting doctoral
fellow at Northwestern Univer-
sity. Pavel’s main fields of inter-
est are empirical and applied eco-
nomics, demographical history,
marriage, and labor markets. His
works include theoretical mod-
els and econometrical analysis.
His Ph.D. dissertation deals with

marriage trends in developed countries in the twentieth century. He
teaches B.A. level macroeconomics and econometrics.

123

	A pattern-based approach for improving model quality
	Abstract
	1 Introduction
	2 Incorrectness and low quality in class-diagram modeling
	3 Anti-patterns for correctness and quality problems
	4 The anti-pattern catalog and its usage
	4.1 The pattern class diagram (PCD) language
	4.2 Pattern examples

	5 Evaluating the impact of anti-pattern awareness on class-diagram analysis skills
	5.1 Goals, hypotheses, and variables
	5.2 Participants
	5.3 Experiment procedure
	5.4 Results
	5.5 Discussion
	5.6 Threats to validity

	6 Related work
	6.1 Languages for specification of modeling patterns
	6.1.1 Languages that are based on a pattern meta-model
	6.1.2 Languages that are based on general mathematical abstractions
	6.1.3 Property-based comparison of the reviewed languages

	6.2 Catalogs of modeling patterns
	6.3 Empirical studies about teaching design patterns

	7 Conclusion
	Acknowledgments
	Appendix: the forms in the experiments
	References

